CM BĐt ;
\(a^3b^2+b^3c^2+c^3a^2>a^2b^3+b^2c^3+c^2a^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(C=cos^2a\left(cos^2a+sin^2a\right)+sin^2a=cos^2a+sin^2a=1\)
x2 + y2 + 2x + 2y = 11 <=> (x2 + 2x) + (y2 + 2y) = 11 <=> x(x + 2) + y(y +2) = 11
xy(x+2)(y+2) = m <=> [x(x+2)].[y(y+2)] = m
đặt a = x(x+2); b = y(y +2)
Khi đó ta có hệ phương trình: a + b = 11; ab = m
Theo hệ thức Vi ét đảo => a; b là ngiệm của phương trình t2 - 11t + m = 0 (*)
a) khi m = 24 .
(*) <=> t2 - 11t + 24 = 0 <=> t2 - 3t - 8t + 24 = 0 <=> (t - 3).(t - 8) = 0 <=> t = 3 hoặc t = 8
=> a = 8 ; b = 3 hoặc a = 3; b = 8
+) a =8 => x(x+2) = 8 => x2 + 2x - 8 = 0 => (x+1)2 = 9 <=> x + 1 = 3 hoặc x+ 1 = -3 <=> x = 2 hoặc x = -4
b = 3 => y(y +2) = 3 <=> y2 + 2y - 3 = 0 <=> (y +1)2 = 4 => y + 1 = 2 hoặc y + 1 = -2 => y = 1 hoặc y = -3
tương tự, a = 3; b = 8
Vậy nghiệm của hệ là (x; y) = (2;1)(2;-3)(-4;1); (-4;-3) ; (1;2); (-3;2); (1;-4); (3;-4)
b) Vì a = x(x+2) => x2 + 2x = a <=> (x+1)2 = a+ 1; b = y(y + 2) => (y +1)2 = b + 1
=> a+ 1 \(\ge\) 0 và b+ 1 \(\ge\) 0 <=> a ; b \(\ge\) -1
Để hệ có nghiệm <=> (*) có 2 nghiệm t1; t2 \(\ge\) -1
<=> \(\Delta\) \(\ge\) 0 ; t1 \(\ge\) -1; t2 \(\ge\) -1
+) \(\Delta\) \(\ge\) 0 <=> 121 - 4m \(\ge\) 0 <=> 30,25 \(\ge\) m
+) t1 \(\ge\) -1; t2 \(\ge\) -1 <=> t1 +1 \(\ge\) 0 ; t2 + 1 \(\ge\) 0
<=> (t1 + 1) + (t2 + 1) \(\ge\) 0 và (t1 + 1)(t2 + 1) \(\ge\) 0
Theo hệ thức Vi ét ta có : t1 + t2 = 11/2 = 5,5; t1.t2 = m
Suy ra (t1 + 1) + (t2 + 1) =7,5 \(\ge\) 0 (đúng) và (t1 + 1)(t2 + 1) = t1.t2 + (t1 + t2) + 1 = m + 5,5 + 1 = m + 6,5 \(\ge\) 0 => m \(\ge\) - 6 ,5
Vậy để hệ có nghiệm <=> -6,5 \(\le\) m \(\le\) 30,25
D = \(\left(sin^2a+cos^2a\right)+\left(cos\left(90-a\right)-sina\right)+1+\left(tan^2\left(90-a\right)-\frac{1}{sin^2a}\right)\)
\(=1+\left(sina-sina\right)+1+\left(cot^2a-1-cos^2a\right)=1+1-1=1\)
A = \(\left(sin^2a+cos^2a\right)^2=1^2=1\)
D = \(sin^2\left(sin^2B+cos^2B\right)+cos^2a=sin^2a+cos^2a=1\)
BÀI 1
Ta có sinB= AH/AB=0.5
=>x=12cm.
Ta có góc C=60 độ
=> sinC=AH/AC=0.866
=>z=6.9 cm
Ta có \(BH=\sqrt{AB^2-AH^2}\)
BH=10.3 cm
Ta có \(AH^2=BH\cdot HC\left(HTL\right)\)
=>\(y=\frac{6^2}{10.3}\)
y=3.5cm
Em viết đề bài ẩu quá, nên nhìn nhiều người chẳng muốn giúp em là phải.
Đầu tiên ta thấy \(\Delta KAH\sim\Delta KCB\) (g.g.) suy ra \(\frac{KA}{KC}=\frac{KH}{KB}\to KH\cdot KC=KA\cdot KB.\)
Xét tam giác vuông \(KAB\), theo hệ thức liên hệ giữa đường cao và hình chiếu, \(KM^2=KA\cdot KB.\)
Từ hai điều trên ta suy ra \(KM^2=KH\cdot KC.\) Nhân cả hai vế của đẳng thức này với \(\frac{AB^2}{4}\), ta suy ra
\(\frac{KM^2\cdot AB^2}{4}=\frac{KH\cdot AB}{2}\times\frac{KC\cdot AB}{2}\Leftrightarrow S_{AMB}^2=S_{AHB}\times S_{ABC}\Leftrightarrow S_{AMB}=\sqrt{S_{AHB}\cdot S_{ABC}}.\) (ĐPCM)
A2 \(\le2\)
=> \(\sqrt{A^2}\le\sqrt{2}\)
=> | A | \(\le\sqrt{2}\)
=> A \(\le\sqrt{2}\)
A2 = 1 + 2x - x2 = 2 - (x2 - 2x + 1) = 2 - (x -1)2 \(\le\) 2 với mọi x
=> A2 \(\le\) 2 => |A| \(\le\) \(\sqrt{A^2}=\left|A\right|\le\sqrt{2}\)
=> A \(\le\) \(\sqrt{2}\)
Dấu "=" xảy ra khi x -1 = 0 <=> x = 1
vậy A lớn nhất bằng \(\sqrt{2}\) tại x = 1
hình như nó ko onl thì phải
B1. Cho tam giác abc vuông tại a, đường cao ah , ab = 3cm, bc =6cm
A. Giải tam giác vuông abc
B. Gọi e,f lần lượt là hình chiếucuar h trên cạnh ab và ac
a) tính độ dài ah và chứng minh ah = ef
b) tính : ea . eb + af . fc