Tìm 5 cặp số nguyên x,y biết
√x+√y=√2016
(dùng máy tính cầm tay)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
150 số chẵn đầu tiên là 0;2;4;...;298
Tổng của 150 số chẵn đầu tiên là:
(0+298)x150:2=22350
Giải:
Số chẵn đầu tiên là: 0
Khoảng cách giữa các số chẵn liên tiếp là: 2 - 0 = 2
Số chẵn thứ 150 là: 2 x (150 - 1) + 0 = 298
Tổng của 150 số chẵn đầu tiên là: (298 + 0) x 150 : 2 = 22350
Đáp số: 22350
a: Gọi hai số tự nhiên liên tiếp là 2k;2k+1
2k+2k+1=4k+1 là số lẻ
=>Tổng của hai số tự nhiên liên tiếp là số lẻ
b: Gọi bốn số tự nhiên liên tiếp là a;a+1;a+2;a+3
Tổng của bốn số tự nhiên liên tiếp là:
a+a+1+a+2+a+3=4a+6
\(=4a+4+2=4\left(a+1\right)+2⋮̸4\)
=>Tổng của bốn số tự nhiên liên tiếp là một số không chia hết cho 4
GT | a cắt b tại A, a cắt c tại B \(\widehat{A_1}\ne\widehat{B_2}\) |
KL | b cắt c |
Vì \(\widehat{A_1}\ne\widehat{B_2}\)
nên b sẽ không song song với c
mà b và c là hai đường thẳng phân biệt
nên b cắt c
a: Xét ΔBHA vuông tại H và ΔBAC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔBHA~ΔBAC
=>\(\dfrac{BH}{BA}=\dfrac{BA}{BC}\)
=>\(BH\cdot BC=BA^2\)
b: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1),(2) suy ra \(AD\cdot AB=AE\cdot AC\)
=>\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Xét ΔADE vuông tại A và ΔACB vuông tại A có
\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Do đó: ΔADE~ΔACB
\(\left(\dfrac{1}{6}+\dfrac{1}{3}\right)^2:\left(1+\dfrac{2}{3}-\dfrac{5}{4}\right)\)
\(=\left(\dfrac{1}{6}+\dfrac{2}{6}\right)^2:\left(\dfrac{12}{12}+\dfrac{8}{12}-\dfrac{15}{12}\right)\)
\(=\left(\dfrac{3}{6}\right)^2:\dfrac{5}{12}=\dfrac{1}{4}\cdot\dfrac{12}{5}=\dfrac{3}{5}\)
1: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔADB=ΔAEC
=>AD=AE và BD=CE
Xét ΔABC có \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
nên DE//BC
Xét tứ giác BEDC có DE//BC
nên BEDC là hình thang
Hình thang BEDC có BD=CE
nên BEDC là hình thang cân
2: Ta có: \(\widehat{DAK}=\widehat{KAB}\)
mà \(\widehat{KAB}=\widehat{AKD}\)
nên \(\widehat{DAK}=\widehat{DKA}\)
=>DA=DK
Ta có: \(\widehat{CBK}=\widehat{ABK}\)
mà \(\widehat{ABK}=\widehat{BKC}\)
nên \(\widehat{CKB}=\widehat{CBK}\)
=>CB=CK
CD=AD+BC
=CK+DK
=>C,K,D thẳng hàng
\(-4x^3+4x^2+x-1\)
\(=-4x^2\left(x-1\right)+\left(x-1\right)\)
\(=\left(x-1\right)\left(1-4x^2\right)=\left(x-1\right)\left(1-2x\right)\left(1+2x\right)\)
\(-4x^3+4x^2+x-1\\ =-4x^2\left(x-1\right)+\left(x-1\right)\\ =\left(x-1\right)\left(1-4x^2\right)\\ =\left(x-1\right)\left[1^2-\left(2x\right)^2\right]\\ =\left(x-1\right)\left(1-2x\right)\left(1+2x\right)\)
1 they are dolls
2those are big mouses
3 there are old men
1. she are the dolls.
2. those are the big mouses.
3. these are the old mans
Gọi thời gian chuyển động của vật là \(t\)
Khi đó \(s_t=v_0t+\dfrac{1}{2}at^2=0.t+\dfrac{1}{2}.2t^2=t^2\)
\(s_{t-1}=v_0\left(t-1\right)+\dfrac{1}{2}a\left(t-1\right)^2=\left(t-1\right)^2\)
Trong giây cuối vật đi được 25m
\(\Leftrightarrow t^2-\left(t-1\right)^2=25\)
\(\Leftrightarrow2t-1=25\)
\(\Leftrightarrow t=13\)
Vậy thời gian vật chuyển động là 13 giây.