K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2019

Ta tính hiệu của M và T

ta có 

Hiệu của Mẫu và Tử của A là   2019^2019-1 - (2019^2018-1) = 2019^2019 - 2019^2018 = 2019^2019.2018

Hiệu của Mẫu và Tử của B là   2019^2019+1 - (2019^2018+1) = 2019^2019 - 2019^2018 = 2019^2019.2018

2 Hiệu trên bằng nhau nên A < B  

27 tháng 6 2019

A B C M D

a) Xét tam giác MAB và tam giác MDC có:

MA=MD (gt)

MB=MC( M là trung điểm BC)

\(\widehat{AMB}=\widehat{DMC}\)( đối đỉnh)

=> Tam giác MAB = tam giác MDC

b)

 Tam giác MAB = tam giác MDC => \(\widehat{BAM}=\widehat{CDM}\)

Mà hai góc này ở vị trí so le trong

=> AB//CD

c)  Ta có AB vuông AC

mag CD // AB

=> CD vuông AC

=> góc ACD bằng 90 độ

26 tháng 6 2019

1. sai dấu nhé 

2.a, \(\frac{45^{10}.5^{20}}{75^{15}}=\frac{\left(3^2.5\right)^{10}.5^{20}}{\left(5^2.3\right)^{15}}=\frac{3^{20}.5^{30}}{5^{30}.3^{15}}=3^5=243\)

b, \(\frac{\left(0,8\right)^5}{\left(0,4\right)^6}=\frac{\left(\frac{4}{5}\right)^5}{\left(\frac{2}{5}\right)^6}=\frac{\left(\frac{2}{5}\cdot2\right)^5}{\left(\frac{2}{5}\right)^6}=\frac{\left(\frac{2}{5}\right)^5\cdot2^5}{\left(\frac{2}{5}\right)^5\cdot\frac{2}{5}}=2^5\div\frac{2}{5}=32\cdot\frac{5}{2}=80\)

c, \(\frac{2^{15}.9^4}{6^6.8^3}=\frac{2^{15}.3^8}{2^6.3^6.2^9}=\frac{2^{15}.3^2}{2^{15}}=3^2=9\)

26 tháng 6 2019

\(\frac{x-y}{x+2y}=\frac{3}{4}\)

\(\Leftrightarrow\left(x-y\right).4=\left(x+2y\right).3\)

\(\Leftrightarrow4x-4y=3x+6y\)

\(\Leftrightarrow4x-3x=6y+4y\)

\(\Leftrightarrow x=10y\)

Thay x=10y vào \(\frac{x}{y}\)ta được :

\(\frac{10y}{y}=10\)

Vậy \(\frac{x}{y}=10\)

26 tháng 6 2019

\(\frac{\times-y}{\times+2y}=\frac{3}{4}\)

\(\Rightarrow\frac{\left(\times+2y\right)-3y}{\times+2y}=\frac{3}{4}\)

\(\Rightarrow1-\frac{3y}{\times+2y}=\frac{3}{4}\)

\(\Rightarrow\frac{3y}{\times+2y}=\frac{1}{4}\)

\(\Rightarrow12y=\times+2y\)

\(\Rightarrow\times=10y\)

\(\Rightarrow\frac{\times}{y}=10\)

26 tháng 6 2019

Ta có: 2a+3b là số hữu tỉ 

=> 5(2a+3b)=10a+15b là số hữu tỉ 

5a-4b là số hữu tỉ

=> 2(5a-4b)=10a -8b là số hữu tỉ

=> (10a+15b)-(10a-8b)=10a+15b-10a+8b=23b

=> b là số hữu tỉ

=> 3b là số hữu tỉ

=> (2a+3b)-3b =2a là số hữu tỉ

=> a là số hữu tỉ

26 tháng 6 2019

Gọi số cây mỗi lớp đã trồng là lớp 7A và 7B lần lượt là e[cây] và f[cây]

Vì tỉ số giữa cây trồng được của lớp 7A và 7B là 0,8 nên ta có :

\(\frac{e}{f}=\frac{4}{5}\Leftrightarrow\frac{e}{4}=\frac{f}{5}\)

Mà lớp 7B trồng nhiều hơn lớp 7A là 20 cây nên ta lại có :

f - e = 20

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{e}{4}=\frac{f}{5}\Leftrightarrow\frac{f-e}{5-4}=\frac{20}{1}=20\)

Đến đây là ez rồi

26 tháng 6 2019

Bài giải : Đổi : 0,8 = 4/5

Gọi số cây lớp 7A; 7B trồng được lần lượt là a,b (Đk: cây; a,b \(\in\)N*)

Theo bài ra, ta có: \(\frac{a}{4}=\frac{b}{5}\) và b - a = 20

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

  \(\frac{a}{4}=\frac{b}{5}=\frac{b-a}{5-4}=\frac{20}{1}=20\)

=> \(\hept{\begin{cases}\frac{a}{4}=20\\\frac{b}{5}=20\end{cases}}\)=> \(\hept{\begin{cases}a=20.4=80\\b=20.5=100\end{cases}}\)

Vậy số cây của lớp 7A và 7B trồng được lần lượt là 80 cây, 100 cây

25 tháng 6 2019

\(\left|a+2\right|=a\)

\(\Rightarrow a+2=\hept{\begin{cases}a\\-a\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a-a=2\\-a-a=2\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}0=2\left(loai\right)\\-2a=2\end{cases}}\)

\(\Rightarrow a=-1\)

25 tháng 6 2019

https://olm.vn/hoi-dap/detail/223750679837.html

25 tháng 6 2019

a) Thiếu đề

b) Áp dụng t/c của dãy tỉ số bằng nhau, ta có :

 \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\) => \(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x+3y+2z}{4+6+6}=\frac{14}{16}=\frac{7}{8}\)

=> \(\hept{\begin{cases}\frac{x}{1}=\frac{7}{8}\\\frac{y}{2}=\frac{7}{8}\\\frac{z}{3}=\frac{7}{8}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{7}{8}.1=\frac{7}{8}\\y=\frac{7}{8}.2=\frac{7}{4}\\z=\frac{7}{8}.3=\frac{21}{8}\end{cases}}\)

Vậy ...

25 tháng 6 2019

Sửa lại xíu :

 \(a)\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và \(x-2y+3z=14\)

\(b)\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)và \(4x+3y+2z=36\)