Cho tam giác ABC vuông tại A, đường cao AH. Trên tia BC lấy điểm D sao cho BD = BA. Đường vuông góc với BC tại D cắt AC tại điểm E.
d.Chứng minh: HD < DC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
Ta thấy: $(2x+4)^2\geq 0$ với mọi $x\in\mathbb{R}$
$\Rightarrow A=(2x+4)^2-5\geq 0-5=-5$
Vậy $A_{\min}=-5$. Giá trị này đạt tại $2x+4=0\Leftrightarrow x=-2$
b.
Vì $(x+1)^2\geq 0$ với mọi $x$
$\Rightarrow -(x+1)^2\leq 0$ với mọi $x$
$\Rightarrow B=-(x+1)^2-5\leq 0-5=-5$
Vậy $B_{\max}=-5$. Giá trị này đạt tại $x+1=0\Leftrightarrow x=-1$
Lời giải:
$(x^3-3x^2+2x-6):(x-3)=[x(x-3)+2(x-3)]:(x-3)$
$=(x-3)(x+2):(x-3)=x+2$
-------------------
$(x^3-8):(x-2)=(x-2)(x^2+2x+4):(x-2)=x^2+2x+4$
a) \(P=\dfrac{2x+5}{x+3}\inℤ\left(x\inℤ;x\ne-3\right)\)
\(\Rightarrow2x+5⋮x+3\)
\(\Rightarrow2x+5-2\left(x+3\right)⋮x+3\)
\(\Rightarrow2x+5-2x-6⋮x+3\)
\(\Rightarrow-1⋮x+3\)
\(\Rightarrow x+3\in\left\{-1;1\right\}\)
\(\Rightarrow x\in\left\{-4;-2\right\}\)
b) \(P=\dfrac{3x+4}{x+1}\inℤ\left(x\inℤ;x\ne-1\right)\)
\(\Rightarrow3x+4⋮x+1\)
\(\Rightarrow3x+4-3\left(x+1\right)⋮x+1\)
\(\Rightarrow3x+4-3x-3⋮x+1\)
\(\Rightarrow1⋮x+1\)
\(\Rightarrow x+1\in\left\{-1;1\right\}\)
\(\Rightarrow x\in\left\{-2;0\right\}\)
c) \(P=\dfrac{4x-1}{2x+3}\inℤ\left(x\inℤ;x\ne-\dfrac{3}{2}\right)\)
\(\Rightarrow4x-1⋮2x+3\)
\(\Rightarrow4x-1-2\left(2x+3\right)⋮2x+3\)
\(\Rightarrow4x-1-4x-6⋮2x+3\)
\(\Rightarrow-7⋮2x+3\)
\(\Rightarrow2x+3\in\left\{-1;1;-7;7\right\}\)
\(\Rightarrow x\in\left\{-2;-1;-5;2\right\}\)
a) P=\(\dfrac{2x+5}{x+3}=\dfrac{2\left(x+3\right)-2}{x+3}=\dfrac{2\left(x+3\right)}{x+3}-\dfrac{2}{x+3}=2-\dfrac{2}{x+3}\)
để \(P\inℤ\) thì \(\dfrac{2}{x+3}\inℤ\) hay 2 ⋮ (x-3) ⇒x+3 ϵ Ư2= (2,-2,1,-1)
ta có bảng sau:
x+3 | 2 | -2 | 1 | -1 |
x | -1 | -5 | -2 | -4 |
Vậy x \(\in-1,-2,-5,-4\)
a) \(\left(x^3-3x^2+2x-6\right):\left(x-3\right)\)
\(=\left[x^2\left(x-3\right)+2\left(x-3\right)\right]:\left(x-3\right)\)
\(=\left[\left(x-3\right)\left(x^2+2\right)\right]:\left(x-3\right)\)
\(=x^2+2\)
b) \(\left(x^3-8\right):\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x+4\right):\left(x-2\right)\)
\(=x^2+2x+4\)
Xem lại đề: Lấy điểm M ở trong hay ở ngoài đoạn thẳng AB?