K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:

\(101^{^{ }3}\) = \(\text{(100+1)^3}\) : \(99^3\)\(\text{(100-1)^3}\)

26 tháng 9 2018

       \(101^3-99^3+1\)

\(=\left(101-99\right)\left(101^2+101.99+99^2\right)+1\)

\(=2.\left[\left(101+99\right)^2-101.99\right]+1\)

\(=2.\left[40000-9999\right]+1\)

\(=2.30001+1=60003\)

Mình nghĩ cách này là thuận tiện nhất rồi. Chúc bạn học tốt.

đề bài là j vậy?

26 tháng 9 2018

a ) x2y2 + 2x2 + y2 + 2

= x2 ( y2 + 2 ) + ( y2 + 2 )

= ( y2 + 2 ) ( x2 + 1 )

b ) a2 - b2 + a - b

= ( a + b ) ( a - b ) + ( a - b )

= ( a - b ) ( a + b + 1 ) 

25 tháng 9 2018

a) \(\left(4x^2-25\right)^2-9\left(2x-5\right)^2\)

\(=\left(4x^2-25\right)^2-\left(6x-15\right)^2\)

\(=\left(4x^2-25-6x+15\right)\left(4x^2-25+6x-15\right)\)

\(=\left(4x^2-6x-10\right)\left(4x^2+6x-40\right)\)

\(=\left(4x^2+4x-10x-10\right)\left(4x^2+16x-10x-40\right)\)

\(=\left[4x\left(x+1\right)-10\left(x+1\right)\right]\left[4x\left(x+4\right)-10\left(x+4\right)\right]\)

\(=\left(4x-10\right)\left(x+1\right)\left(4x-10\right)\left(x+4\right)\)

\(=\left(4x-10\right)^2\left(x+1\right)\left(x+4\right)\)

\(=4\left(2x-5\right)^2\left(x+1\right)\left(x+4\right)\)

b) \(a^6-a^4+2a^3+2a^2\)

\(=a^2\left(a^4-a^2+2a+2\right)\)

\(=a^2\left(a^4+a^3-a^3-a^2+2a+2\right)\)

\(=a^2\left[a^3\left(a+1\right)-a^2\left(a+1\right)+2\left(a+1\right)\right]\)

\(=a^2\left(a+1\right)\left(a^3-a^2+2\right)\)

25 tháng 9 2018

Bạn kham khảo tại link:

Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M, N, E là ba điểm lần lượt lấy trên AD, CD, SO. Tìm thiết diện của hình chóp bởi ( MNP) - Hình học không gian - Diễn đàn Toán học

Copy và dán:

https://diendantoanhoc.net/topic/125716-cho-h%C3%ACnh-ch%C3%B3p-sabcd-c%C3%B3-%C4%91%C3%A1y-l%C3%A0-h%C3%ACnh-b%C3%ACnh-h%C3%A0nh-t%C3%A2m-o-g%E1%BB%8Di-m-n-e-l%C3%A0-ba-%C4%91i%E1%BB%83m-l%E1%BA%A7n-l%C6%B0%E1%BB%A3t-l%E1%BA%A5y-tr%C3%AAn-ad-cd-so-t%C3%ACm-thi%E1%BA%BFt-di%E1%BB%87/

Học tốt!

26 tháng 9 2018

thanks

25 tháng 9 2018

\(VT=\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{\left(b-a\right)-\left(c-a\right)}{\left(b-a\right)\left(c-a\right)}+\frac{\left(c-b\right)-\left(a-b\right)}{\left(c-b\right)\left(a-b\right)}+\frac{\left(a-c\right)-\left(b-c\right)}{\left(a-c\right)\left(b-c\right)}\)

\(=\frac{1}{c-a}-\frac{1}{b-a}+\frac{1}{a-b}-\frac{1}{c-b}+\frac{1}{b-c}-\frac{1}{a-c}\)

\(=\frac{1}{c-a}+\frac{1}{a-b}+\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{b-c}+\frac{1}{c-a}\)

\(=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)=VP\left(đpcm\right)\)