(2x+y)2+7a(2x+y)+10a 2
giải theo cách phân tích thành nhân tử và làm theo cách này giúp mình
ví dụ :(x+y)2-3(x+y)-10
=[(x+y)-5][(x+y)+2]
=(x+y-5)(x+y+2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(F\in SC\subset\left(SAC\right)\)
\(F\in\left(FBD\right)\)
Do đó: \(F\in\left(SAC\right)\cap\left(FBD\right)\)
Gọi O là giao điểm của AC và BD trong mp(ABCD)
=>\(O\in\left(SAC\right)\cap\left(FBD\right)\)
Do đó: \(\left(SAC\right)\cap\left(FBD\right)=FO\)
b: Xét (SAD) và (SBC) có
\(S\in\left(SAD\right)\cap\left(SBC\right)\)
AD//BC
Do đó: (SAD) giao (SBC)=xy, xy đi qua S và xy//AD//BC
*) Với ba chữ số: 0; 1; 2, ta lập được các số:
102; 120; 201; 210
*) Với ba chữ số: 0; 1; 5 ta lập được các số sau:
105; 150; 501; 510
*) Với ba chữ số: 0; 2; 4 ta lập được các số sau:
204; 240; 402; 420
*) Với ba chữ số: 0; 3; 6 ta lập được các số sau:
306; 360; 603; 630
*) Với ba chữ số: 1; 2; 3 ta lập được các số sau:
123; 132; 213; 231; 312; 321
*) Với ba chữ số: 1; 2; 6 ta lập được các số sau:
126; 162; 216; 261; 612; 621
*) Với ba chữ số: 2; 4; 6 ta lập được các số sau:
246; 264; 426; 462; 624; 642
Vậy số các số có thể lập được là:
4 + 4 + 4 + 4 + 6 + 6 + 6 = 34 (số)
Biểu thức mẫu là $\sqrt{4}-x^2$ hay $\sqrt{4-x^2}$ vậy bạn?
\(\left|\Omega\right|=C^3_{12}\)
a) Gọi biến cố A: "Lấy được cả 2 loại màu."
TH1: Lấy được 2 viên bi màu xanh: Có \(7.C^2_5=70\) cách.
TH2: Lấy được 2 viên bi màu đỏ: Có \(5.C^2_7=105\) cách.
\(\Rightarrow\) \(\left|A\right|=105+70=175\) cách
\(\Rightarrow P\left(A\right)=\dfrac{\left|A\right|}{\left|\Omega\right|}=\dfrac{175}{C^3_{12}}=\dfrac{35}{44}\)
b) Gọi B: "Lấy được ít nhất 1 viên bi đỏ." \(\Rightarrow\overline{B}:\) "Không lấy được viên bi đỏ nào." hay "Bốc được 3 viên bi đều màu xanh."
\(\Rightarrow\left|\overline{B}\right|=C^3_5=10\)
\(\Rightarrow P\left(\overline{B}\right)=\dfrac{\left|\overline{B}\right|}{\left|\Omega\right|}=\dfrac{10}{C^3_{12}}=\dfrac{1}{22}\)
\(\Rightarrow P\left(B\right)=1-P\left(\overline{B}\right)=1-\dfrac{1}{22}=\dfrac{21}{22}\)
c) Gọi C: "Lấy được ít nhất 1 bi xanh." \(\Rightarrow\overline{C}:\) "Không lấy được bi xanh nào." hay "Lấy được 3 viên bi màu đỏ."
\(\Rightarrow\left|\overline{C}\right|=C^3_7=35\)
\(\Rightarrow P\left(\overline{C}\right)=\dfrac{\left|C\right|}{\left|\Omega\right|}=\dfrac{35}{C^3_{12}}=\dfrac{7}{44}\)
\(\Rightarrow P\left(C\right)=1-P\left(\overline{C}\right)=1-\dfrac{7}{44}=\dfrac{37}{44}\)
d) Gọi D: "Lấy được ít nhất 2 viên bi màu đỏ."
TH1: Lấy được 2 viên bi đỏ: Có \(C^2_7.5=105\) cách
TH2: Lấy được 3 viên bi đỏ: Có \(C^3_7=35\) cách
\(\Rightarrow\left|D\right|=105+35=140\)
\(\Rightarrow P\left(D\right)=\dfrac{\left|D\right|}{\left|\Omega\right|}=\dfrac{140}{C^3_{12}}=\dfrac{7}{11}\)
Lời giải:
$(2x+y)^2+7a(2x+y)+10a^2$
$=(2x+y)^2+2a(2x+y)+5a(2x+y)+10a^2$
$=(2x+y)(2x+y+2a)+5a(2x+y+2a)$
$=(2x+y+2a)(2x+y+5a)$
Ý bạn muốn phân tích đa thức $(2x+y)^2+7a(2x+y)+10a^2$ thành nhân tử?