Rút gọn biểu thức (a+b)3+(b+c)3+(c+a)3-3(a+b)(b+c)(c+a)
Các bạn giúp tớ với nhé
Cảm ơn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\left(a+b+1\right).\left(a^2+b^2\right)+\frac{4}{a+b}\)
\(\ge\left(a+b+1\right).2ab+\frac{4}{a+b}\)
\(=2.\left(a+b\right)+2+\frac{4}{a+b}\)
\(=a+b+2+a+b+\frac{4}{a+b}\)
\(\ge2.\sqrt{a.b}+2+2.\sqrt{\left(a+b\right).\frac{4}{a+b}}=2+2+2\sqrt{4}\)
\(=2+2+4=8\)
Vậy\(\left(a+b+1\right).\left(a^2+b^2\right)+\frac{4}{a+b}\ge8\)với ab=1
\(16x^3-12x^2+3x-7=0\)
\(\Leftrightarrow16x^3-16x^2-3x^2+3x+7x^2-7=0\)
\(\Leftrightarrow16x^2\left(x-1\right)-3x\left(x-1\right)+7\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow16x^2\left(x-1\right)-3x\left(x-1\right)+\left(x-1\right)\left(7x+7\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(16x^2-3x+7x+7\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(16x^2+4x+7\right)=0\)
<=> x - 1 = 0
<=> x = 1
\(\Leftrightarrow16x^3-16x^2+4x^2-4x+7x-7=0\)
\(\Leftrightarrow16x^2.\left(x-1\right)+4x.\left(x-1\right)+7.\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right).\left(16x^2+4x+7\right)=0\)
Ta có \(16x^2+4x+7=\left(4x\right)^2+2.4x.\frac{1}{2}+\frac{1}{4}+\frac{27}{4}\)
\(=\left(4x+\frac{1}{2}\right)^2+\frac{27}{4}>0\)
nên \(\left(x-1\right).\left(16x^2+4x+7\right)=0\)
\(\Leftrightarrow x-1=0\)
\(\Rightarrow x=1\)
(x^2 + x)^2 - 2.(x^2 + x) - 15
= (x2 + x)2 - 2(x2 + x) + 1 - 16
= (x2 + x + 1)2 - 16
= (x2 + x + 1 - 4)(x2 + x + 1 + 4)
= (x2 + x - 3)(x2 + x + 5)
\(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)
\(=\left(\left(x^2+x\right)^2-2\left(x^2+x\right)+1\right)-16\)
\(=\left(x^2+x-1\right)^2-4^2\)
\(=\left(x^2+x-1-4\right)\left(x^2+x-1+4\right)\)
\(=\left(x^2+x-5\right)\left(x^2+x+3\right)\)
Đặt a+b=x ; b+c=y ; c+a=z, A=(a+b)3.....
Khi đó A= x3+y3+z3-3xyz= (x+y)3- 3xy(x+y) - 3xyz +z3
= (x+y+z)3- 3z(x+y)(x+y+z)- 3xy(x+y+z)
=(x+y+z)(x2+y2+z2+2xy+2yz+2xz-3xz-3zy-3xy)
= (x+y+z)(x2+y2+z2-xy-yz-xz)
tu day em thay vao nhe