Cho \(A=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.......+\frac{1}{\sqrt{100}}\)
Chứng minh A < 18.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Theo định lí tỉ số lượng giác của hai góc phụ nhau, ta có:
\(\sin1=\cos89....\sin89=\cos1\)
Vậy \(A=0\)
b) Theo định lí tỉ số lượng giác của 2 góc phụ nhau, ta có:
\(\tan1=\cot89...\tan2=\cot88...\)
\(\Rightarrow B=\tan45\cdot\tan46\cdot\cot46\cdot...\cdot\tan89\cdot\cot89\)
Mà \(\tan\lambda\cdot\cot\lambda=1\)
\(\Rightarrow B=\tan45\cdot1=1\)
c) Bạn làm tương tự dựa vào CT \(\sin^2\lambda+\cos^2\lambda=1\)
\(\frac{8\sqrt{41}}{\sqrt{45+4\sqrt{41}}+\sqrt{45-4\sqrt{41}}}\)
\(=\frac{8\sqrt{41}}{\sqrt{41+2.2.\sqrt{41}+4}+\sqrt{41-2.2.\sqrt{4}+4}}\)
\(=\frac{8\sqrt{41}}{\sqrt{\left(\sqrt{41}+2\right)^2}+\sqrt{\left(\sqrt{41}-2\right)^2}}\)
\(=\frac{8\sqrt{41}}{\sqrt{41}+2+\sqrt{41}-2}\)
\(=\frac{8\sqrt{41}}{2\sqrt{41}}=4\)
Đặt tên cho tam giác vuông là ABC , góc A vuông, đường cao AH
Giải :
Ta có :\(\Delta ABC,\widehat{A}=90^o,AH\perp BC\)
Với \(\frac{AB}{AC}=\frac{3}{4}\)
\(\Rightarrow\frac{AB}{3}=\frac{AC}{4}\)
\(\Rightarrow\)\(\frac{AB^2}{9}=\frac{AC^2}{16}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{15625}{25}\)\(=625\)
\(AB^2=9.625=5625\)
\(\Rightarrow AB=75\left(cm\right)\)
\(AC^2=16.625=10000\)
\(\Rightarrow AC=100\left(cm\right)\)
Xét \(\Delta ABC\)vuông tại A, \(AH\perp BC\)
Ta có : \(AB^2=BH.BC\)(hệ thức...)
\(\Rightarrow BH=\frac{AB^2}{BC}=\frac{5625}{125}=45\left(cm\right)\)
Ta có : \(H\in BC\Rightarrow BH+HC=BC\)
\(\Rightarrow CH=BC-BH\)
\(\Rightarrow CH=125-45=80\left(cm\right)\)
còn thiếu đề chứng minh rằng A < 18