\(\frac{32\cdot\left(1+\sqrt{5}\right)}{3\cdot\left(3-\sqrt{5}\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cô - si cho 2 số không âm, ta có:
\(\frac{a^2+6a+3}{a^2+a}=\frac{\left(3a^2+3\right)+6a-2a^2}{a^2+a}\ge\frac{6a+6a-2a^2}{a^2+a}\)
\(=\frac{12a-2a^2}{a^2+a}=\frac{14}{a+1}-2\)
Tương tự ta có: \(\frac{b^2+6b+3}{b^2+b}\ge\frac{14}{b+1}-2\);\(\frac{c^2+6c+3}{c^2+c}\ge\frac{14}{c+1}-2\)
Cộng từng vế của 3 bất đẳng thức trên và sử dụng BĐT Bunhiacopxki dạng phân thức, ta được:
\(A\ge14\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)-6\ge14.\frac{9}{a+b+c+3}-6\)
\(\ge14.\frac{9}{3+3}-6=15\)
Đẳng thức xảy ra khi a = b = c = 1
Cách 2, dùng UCT xét BĐT phụ
Xét BĐT phụ: \(\frac{x^2+6x+3}{x^2+x}\ge\frac{-7}{2}x+\frac{17}{2}\)(*)
Thật vậy: (*)\(\Leftrightarrow\frac{\left(7x+6\right)\left(x-1\right)^2}{2\left(x^2+x\right)}\ge0\)(Đúng với mọi x dương)
Áp dụng, ta được: \(A=\frac{a^2+6a+3}{a^2+a}+\frac{b^2+6b+3}{b^2+b}+\frac{c^2+6c+3}{c^2+c}\)\(\ge\frac{-7}{2}\left(a+b+c\right)+\frac{17}{2}.3=\ge\frac{-7}{2}.3+\frac{51}{2}=15\)
Đẳng thức xảy ra khi a = b = c = 1
ta có:
\(x^3+3x^2+3x+1\ge x^3+x^2+x+1>x^3\)
\(\Rightarrow\left(x+1\right)^3\ge x^3+x^2+x+1>x^3\Rightarrow\left(x+1\right)^3=x^3+x^2+x+1\)
<=>x=0=>2y=1=>y=0
Vậy nghiệm của pt:(x;y)=(0;0)
Đặt \(\left(\frac{a}{b+c};\frac{b}{c+a};\frac{c}{a+b}\right)\rightarrow\left(x;y;z\right)\) Khi đó ta có:
\(\left(x+y+z\right)^2+14xyz\ge4\)
Theo BĐT Nesbit \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\Rightarrow x+y+z\ge\frac{3}{2}\)
\(VT=\left(x+y+z\right)^2+14xyz=x^2+y^2+z^2+2\left(xy+yz+xz\right)+14xyz\)
\(=x^2+y^2+z^2+6xyz+2\left(xy+yz+xz\right)+8xyz\)
\(\ge x^2+y^2+z^2+\frac{9xyz}{x+y+z}+2\left(xy+yz+xz\right)+8xyz\)
\(\ge4\left(xy+yz+xz\right)+8xyz=4\)
toi sv3 .................................................................................................................
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang we
\(2015\sqrt{2015x-2014}+\sqrt{2016x-2015}=2016\)
ĐK:\(x\ge\frac{2015}{2016}\)
\(\Leftrightarrow2015\left(\sqrt{2015x-2014}-1\right)+\sqrt{2016x-2015}-1=0\)
\(\Leftrightarrow2015\frac{2015x-2014-1}{\sqrt{2015x-2014}+1}+\frac{2016x-2015-1}{\sqrt{2016x-2015}+1}=0\)
\(\Leftrightarrow2015\frac{2015x-2015}{\sqrt{2015x-2014}+1}+\frac{2016x-2016}{\sqrt{2016x-2015}+1}=0\)
\(\Leftrightarrow2015\frac{2015\left(x-1\right)}{\sqrt{2015x-2014}+1}+\frac{2016\left(x-1\right)}{\sqrt{2016x-2015}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{2015^2}{\sqrt{2015x-2014}+1}+\frac{2016}{\sqrt{2016x-2015}+1}\right)=0\)
Dễ thấy: \(\frac{2015^2}{\sqrt{2015x-2014}+1}+\frac{2016}{\sqrt{2016x-2015}+1}>0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
\(\sqrt{3x^2-5x+1}-\sqrt{3x^2-3x-3}\)=\(\sqrt{x^2-2}-\sqrt{x^2-3x+4}\) (dk tu xd)
\(\Leftrightarrow\frac{-2x+4}{\sqrt{3x^2-5x+1}+\sqrt{3x^2-3x-3}}\)=\(\frac{3x-6}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{3}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}+\frac{2}{\sqrt{3x^2-5x+1}+\sqrt{3x^2-3x-3}}\right)=0\)
\(\Leftrightarrow x=2\)
\(\frac{32\times\left(1+\sqrt{5}\right)}{3\times\left(3-\sqrt{5}\right)}=\frac{32\cdot\left(1+\sqrt{5}\right)\cdot\left(3+\sqrt{5}\right)}{3\cdot\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\)
= \(\frac{32\cdot\left(8+4\sqrt{5}\right)}{3\cdot4}\)
\(=\frac{32\left(2+\sqrt{5}\right)}{3}\)
mình chỉ ra được đến thế thôi
thank . Nhưng kết quả bằng 2 bạn ak