E = 1/3 - 1/7 - 1/13 . 3/4 - 3/16 - 3/63- 3/256
2/3 - 2/7 - 2/13 1 - 1/4 - 1/16 - 1/64
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A = 25 - |3x - 6| - |3x + 8|
A = 25 - (|6 - 3x| + |3x + 8|) < = 25 - |6 - 3x + 3x + 8| = 25 - |14| = 25 - 14 = 11
Dấu "=" xảy ra <=> (3x - 6)(3x + 8) = 0
=> -8/3 \(\le\)x \(\le\)2
Vậy Max của A = 11 tại \(-\frac{8}{3}\le x\le2\)
Ta có: B = |2x - 5| - |2x - 11| + 3 > = |2x - 5 - 2x + 11| + 3 = |6| + 3 = 6 + 3 = 9
Dấu "=" xảy ra <=> (2x - 5)(2x - 11) = 0
=> \(\frac{5}{2}\le x\le\frac{11}{2}\)
Vậy Min của B = 9 tại \(\frac{5}{2}\le x\le\frac{11}{2}\)
a) \(x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)
b) \(x^2-3x+2=0\Leftrightarrow x^2-3x+\frac{9}{4}-\frac{1}{4}=0\)
\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2=\frac{1}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{3}{2}=\sqrt{\frac{1}{4}}=\frac{1}{2}\\x-\frac{3}{2}=-\sqrt{\frac{1}{4}}=-\frac{1}{2}\end{cases}}\)
Giải tiếp nha
Ta co:
\(\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=4\)
Dau "=" xay ra khi:
\(1\le x\le5\)
\(\left|y+1\right|\ge0\Rightarrow\left|y+1\right|+3\ge3\Rightarrow\frac{12}{\left|y+1\right|+3}\le4\)
Dau "=" xay ra khi:
\(\left|y+1\right|=0\Leftrightarrow y=-1\)
Ma \(\left|x-5\right|+\left|1-x\right|=\frac{12}{\left|y+1\right|+3}\)
\(\Rightarrow\left|x-5\right|+\left|1-x\right|=\frac{12}{\left|y+1\right|+3}=4\)
Vay \(1\le x\le5;y=-1\)
\(4x^4+4x^2=0\)
\(\Leftrightarrow4x^2\left(x^2+1\right)=0\)
\(\Leftrightarrow x=0\)
\(3x^4+4x^2=0\)
\(x^4\left(3+4\right)=0\)
=>\(x^4=0\)
=>\(x=0\)
Ta có: \(4x=5y\Leftrightarrow\frac{x}{5}=\frac{y}{4}\Leftrightarrow\frac{x}{45}=\frac{y}{36}\)
\(14x=9z\Leftrightarrow\frac{x}{9}=\frac{z}{14}\Leftrightarrow\frac{x}{45}=\frac{z}{70}\)
\(\Leftrightarrow\frac{x}{45}=\frac{y}{36}=\frac{z}{70}=\frac{2x}{90}=\frac{3y}{108}\)
Áp dụng t/c dãy tỉ số = nhau, ta có:
\(\frac{2x}{90}=\frac{3y}{108}=\frac{2x-3y}{90-108}=\frac{-10}{-18}=\frac{5}{9}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{45}=\frac{5}{9}\\\frac{y}{36}=\frac{5}{9}\\\frac{z}{70}=\frac{5}{9}\end{cases}\Rightarrow}\hept{\begin{cases}x=25\\y=20\\z=\frac{350}{9}\end{cases}}\)
Ta có :
\(4x=5y\Rightarrow4x=5y=\frac{y}{4}=\frac{x}{5}\)
\(14x=9z\Rightarrow14x=9z=\frac{z}{14}=\frac{x}{9}\)
VẬY NÊN ta có : \(\frac{y}{4}=\frac{x}{5},\frac{x}{9}=\frac{z}{14}\Rightarrow\frac{y}{36}=\frac{x}{45},\frac{x}{45}=\frac{z}{70}\)
\(\Rightarrow\frac{y}{36}=\frac{x}{45}=\frac{z}{70}\)
ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU TACÓ :
\(\frac{X-Y}{36-45}\)=\(\frac{2X-3Y}{72-135}=\frac{-10}{-63}\)
MÌNH CHỈ LÀM ĐẾN ĐÓ THÔI DÀI LẮM
a) Thay x = 1 vào M(x), ta được:
\(M\left(x\right)=m.1^2+2m.1-6=m+2m-6=3m-6=0\)
\(\Leftrightarrow3m=6\Leftrightarrow m=2\)
Vậy m = 2 thì M(x) có nghiệm bằng 1
\(\frac{x-1}{2019}+\frac{x-2}{2018}-\frac{x-3}{2017}=\frac{x-4}{2016}\)
\(\Leftrightarrow\frac{x-1}{2019}+\frac{x-2}{2018}-\frac{x-3}{2017}-\frac{x-4}{2016}=0\)
\(\Leftrightarrow\frac{x-1}{2019}-1+\frac{x-2}{2018}-1-\frac{x-3}{2017}+1-\frac{x-4}{2016}+1=0\)
\(\Leftrightarrow\frac{x-2020}{2019}+\frac{x-2020}{2018}-\frac{x-2020}{2017}-\frac{x-2020}{2016}=0\)
\(\Leftrightarrow\left(x-2020\right)\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}\right)=0\)
\(\Leftrightarrow x-2020=0\Leftrightarrow x=2020\)
\(\frac{x-1}{2019}+\frac{x-2}{2018}-\frac{x-3}{2017}=\frac{x-4}{2016}\)
\(\frac{x-1}{2019}+\frac{x-2}{2018}=\frac{x-3}{2017}+\frac{x-4}{2016}\)
\(\frac{x-1}{2019}+\frac{x-2}{2018}-2=\frac{x-3}{2017}+\frac{x-4}{2016}-2\)
\(\left(\frac{x-1}{2019}-1\right)+\left(\frac{x-2}{2018}-1\right)=\left(\frac{x-3}{2017}-1\right)+\left(\frac{x-4}{2016}-1\right)\)
\(\frac{x-1-2019}{2019}+\frac{x-2-2018}{2018}=\frac{x-3-2017}{2017}+\frac{x-4-2016}{2016}\)
\(\frac{x-2020}{2019}+\frac{x-2020}{2018}=\frac{x-2020}{2017}+\frac{x-2020}{2016}\)
\(\frac{x-2020}{2019}+\frac{x-2020}{2018}-\frac{x-2020}{2017}-\frac{x-2020}{2016}=0\)
\(\left(x-2020\right)\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}\right)=0\)
\(\Rightarrow x-2020=0\)
Vậy \(x=2020\)
\(E=\frac{\frac{1}{3}-\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}-\frac{2}{7}-\frac{2}{13}}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{64}-\frac{3}{256}}{1-\frac{1}{4}-\frac{1}{16}-\frac{1}{64}}\)
\(=\frac{\frac{1}{3}-\frac{1}{7}-\frac{1}{13}}{2.\left(\frac{1}{3}-\frac{1}{7}-\frac{1}{13}\right)}.\frac{3.\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{64}-\frac{1}{256}\right)}{4.\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{64}-\frac{1}{256}\right)}\)
\(=\frac{1}{2}.\frac{3}{4}\)
\(=\frac{3}{8}\)