Cho a,b,c > 0. Chuwgs minh rằng: a/(b+c) +b/(c+a) + căn(2c/a+b) => 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a=\sqrt{2-x^2};b=\sqrt{2-\frac{1}{x^2}};c=x+\frac{1}{x}\)
xet x<0 vt < 2 căn 2<3, vt >4=>loại=>x>0=>c>=2;
ta có a+b=4-c;
a^2+b^2=4-x^2-1/x^2=6-c^2;
\(=>\hept{\begin{cases}2a+2b=8-2c\left(2\right)\\a^2+b^2=6-c^2\left(1\right)\end{cases}}\)
trừ 1 cho 2=>a^2-2a+b^2-2b=-c^2-2-2c=>a^2-2b+1+b^2-2b+1=-c^2+2c-1+1
=>\(\left(a-1\right)^2+\left(b-1\right)^2=-\left(c-1\right)^2+1\)
\(< =>\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=1\)
ta lại có (a-1)^2>=0;(b-1)^2>=0;(c-1)^2>=(2-1)^2=1=>Vế trái>=1=Vế phải, dấu bằng xảy ra<=>
\(\hept{\begin{cases}a=1\\b=1\\c=2\end{cases}< =>x=1}\)
Bạn tham khảo nhé:Điều kiện bạn tự tìm nhé
pt\(\Leftrightarrow\sqrt{2-x^2}+x-2+\sqrt{2-\frac{1}{x^2}}+\frac{1}{x}-2=0\)
\(\Leftrightarrow\frac{2-x^2-\left(x-2\right)^2}{\sqrt{2-x^2}-x+2}+\frac{2-\frac{1}{x^2}-\left(\frac{1}{x}-2\right)^2}{\sqrt{2-\frac{1}{x^2}}-\frac{1}{x}+2}=0\)
\(\Leftrightarrow\frac{-2\left(x^2-2x+1\right)}{\sqrt{2-x^2}-x+2}+\frac{-2\left(\frac{1}{x^2}-\frac{2}{x}+1\right)}{\sqrt{2-\frac{1}{x^2}}-\frac{1}{x}+2}=0\)
\(\Leftrightarrow\frac{\left(x-1\right)^2}{\sqrt{2-x^2}-x+2}+\frac{\left(\frac{1}{x}-1\right)^2}{\sqrt{2-\frac{1}{x^2}}-\frac{1}{x}+2}=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(\frac{1}{\sqrt{2-x^2}-x+2}+\frac{\frac{1}{x^2}}{\sqrt{2-\frac{1}{x^2}}-\frac{1}{x}+2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=0\Leftrightarrow x=1\left(N\right)\\\frac{1}{\sqrt{2-x^2}-x+2}+\frac{1}{x\sqrt{2x^2-1}-x+2x^2}=0\left(1\right)\end{cases}}\)
\(\left(1\right)\Leftrightarrow x\sqrt{2x^2-1}-x+2x^2+\sqrt{2-x^2}-x+2=0\)
Nhân 2 vào ta có:
\(\Leftrightarrow2x\sqrt{2x^2-1}-4x+4x^2+4+2\sqrt{2-x^2}=0\)
\(\Leftrightarrow\left(x+\sqrt{2x^2-1}\right)^2+\left(\sqrt{2-x^2}+1\right)^2+2\left(x-1\right)^2=0\left(VN\right)\)
Vậy phương trình có 1 nghiệm duy nhất là \(x=1\)
\(\sqrt{xy}+1+\sqrt{x}+\sqrt{y}\)
=\(\sqrt{x}\left(\sqrt{y}+1\right)+\left(\sqrt{y}+1\right)\)
\(=\left(\sqrt{y}+1\right)\left(\sqrt{x}+1\right)\)
a, ^BOD + ^OBD = 120 = ^BOD + ^EOC (vì ^DOE = 60)
=> ^BDO = ^EOC
=> ∆BDO đồng dạng ∆COE
=> BD/BO = CO/CE
<=> BD.CE = BC²/4
b, DO/OE = BD/CO
<=> BO/OE = BD/OD
=> ∆BOD đồng dạng ∆OED
=> ^BDO = ^ODE
=> OD là tia phân giác của góc BDE
c, kẻ OI,OK lần lượt vuông góc với AB,DE
AB tiếp xúc với (O;OI)
có ∆IOD = ∆KOD (cạnh huyền góc nhọn)
=> OI = OK
mà OK ┴ DE
=> (O) luôn tiếp xúc với DE
60 o 1 2 A B C D E H O K
a) \(\Delta ABC\Rightarrow\widehat{B}=\widehat{C}=60^o\)
+) \(\Delta BDO\)có : \(\widehat{B}+\widehat{D_1}+\widehat{BOD}=180^o\)
\(\Rightarrow\widehat{D_1}=180^o-\widehat{B}-\widehat{BOD}\)
\(=180^o-60^o-\widehat{BOD}\)
\(=120^o-\widehat{BOD}\left(1\right)\)
Ta lại có :
\(\widehat{BOD}+\widehat{DOE}+\widehat{EOC}=\widehat{BOC}=180^o\)
\(\Rightarrow\widehat{EOC}=180^o-\widehat{DOE}-\widehat{BOD}\)
\(=180^o-60^o-\widehat{BOD}\)
\(=120^o-\widehat{BOD}\left(2\right)\)
Từ (1) và (2) , suy ra : \(\widehat{D_1}=\widehat{EOC}\)
\(\Delta BOD\)và \(\Delta EOC\)có :
\(\widehat{B}=\widehat{C}=60^o\)
\(\widehat{D_1}=\widehat{EOC}\left(cmt\right)\)
\(\Rightarrow\Delta BOD~\Delta EOC\)
\(\Rightarrow\frac{BO}{CE}=\frac{BD}{CO}\)
\(\Rightarrow BD.CE=BO.CO=\frac{BC^2}{4}\)
b) \(\Delta BOD~\Delta EOC\)
\(\Rightarrow\frac{OD}{EO}=\frac{BD}{CO}\)
mà CO = BO \(\Rightarrow\frac{OD}{EO}=\frac{BD}{BO}\)
\(\Delta BOD\)và \(\Delta OED\)có :
\(\widehat{B}=\widehat{O}\left(=60^o\right)\)
\(\frac{BD}{BO}=\frac{OD}{OE}\)
\(\Rightarrow\Delta BOD~\Delta OED\)
\(\Rightarrow\widehat{BDO}=\widehat{ODE}\)
=> OD là tia phân giác của góc BDE
c) Gọi đường tròn tâm O tiếp xúc với AB có bán kính R
Gọi H, K là chân đường vuông góc hạ từ O đến DE và AB
=> R = OK
O thuộc đường phân giác của \(\widehat{BDE}\)
=> OH = OK.
=> OH = R
=> DE tiếp xúc với ( O ; R ) (đpcm)