cho 3 so duong a,b,c tm \(a+b+c=3\)
cmr \(\frac{1}{1+2ab^2}+\frac{1}{1+2bc^2}+\frac{1}{1+2ca^2}\ge1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho 3 so duong a,b,c tm \(a+b+c=3\)
cmr \(\frac{1}{1+2ab^2}+\frac{1}{1+2bc^2}+\frac{1}{1+2ca^2}\ge1\)
a, Áp dụng hệ thức AB^2=BH.BC
<=> 13^2=5.BC
=> BC=33,8
áp dụng định lý pytago vào tam giác ABC
AB^2+AC^2=BC^2
<=> 13^2+AC^2=33.8^2
=> AC=31,2
\(\sin B=\frac{AC}{BC}=\frac{31,2}{33,8}=\frac{12}{13}\)
\(\sin C=\frac{AB}{BC}=\frac{13}{33,8}=\frac{5}{13}\)
a) Áp dụng đlí Py - ta - go cho tam giác HAB ( \(\widehat{H}=90^o\))
Ta có : \(AB^2=AH^2+BH^2\)
\(13^2=AH^2+5^2\)
\(AH^2=13^2-5^2\)
\(\Leftrightarrow AH=\sqrt{13^2-5^2}\)
\(\sin B=\frac{AH}{AB}=\frac{\sqrt{13^2-5^2}}{13}\approx0,923\)
Áp dụng hệ thức lượng cho tam giác ABC ( \(\widehat{A}=90^o\)) , đường cao AH , ta có :
\(AH^2=BH.HC\Rightarrow HC=\frac{HC^2}{BH}=\frac{12^2}{5}=28,8\)
\(\Rightarrow BC=5+28,8=33,8\)
\(\sin C=\frac{AB}{BC}=\frac{13}{33,8}\approx0,384\)
Vậy : \(\sin B\approx0,923\)
\(\sin C\approx0,384\)
=\(\frac{sin^2a-2sina.cosa+cos^2a}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{\left(sina-cosa\right)^2}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{sina-cosa}{sina+cosa}=\frac{tana-1}{tana+1}\)
Đặt \(\sqrt{x+5}=a\text{≥}0\)
Ta có hệ phương trình \(\hept{\begin{cases}x^2+a=5\\x+5=a^2\end{cases}}\)
\(\Leftrightarrow\left(x+a\right)\left(x-a+1\right)=0\Leftrightarrow\left(x+\sqrt{x+5}\right)\left(x-\sqrt{x+5}+1\right)\)=0
Ta có:
\(3=a+b+c\ge3\sqrt[3]{abc}\)
\(\Leftrightarrow abc\le1\)
Từ đó ta có:
\(\frac{1}{1+2ab^2}+\frac{1}{1+2bc^2}+\frac{1}{1+2ca^2}\)
\(\ge\frac{1}{1+\frac{2b}{c}}+\frac{1}{1+\frac{2c}{a}}+\frac{1}{1+\frac{2a}{b}}\)
\(=\frac{c}{c+2b}+\frac{a}{a+2c}+\frac{b}{b+2a}\)
\(=\frac{c^2}{c^2+2bc}+\frac{a^2}{a^2+2ca}+\frac{b^2}{b^2+2ab}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)