Cho hình bình hành ABCD có AD=2AB, góc A=60 độ. Gọi E, F lần lượt là trung điểm BC và AD.
a/ Chứng minh: AE vuông góc với BF.
b/ Chứng minh: tứ giác BFDC là hình thang cân.
c/ Lấy M đối xứng với A qua B. Chứng minh: Tứ giác BMCD là hình chữ nhật.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^3-12xy-y^3\)
\(A=\left(x-y\right)\left(x^2+xy+y^2\right)-12xy\)
Ta có: \(x-y=4\)
\(\Rightarrow A=4.\left(x^2+xy+y^2\right)-12xy\)
\(A=4x^2+4xy+4y^2-12xy\)
\(A=4x^2+4y^2-8xy\)
\(A=4.\left(x^2-2xy+y^2\right)\)
\(A=4.\left(x-y\right)^2\)
\(\Rightarrow A=4.4^2\)
\(A=64\)
Vậy \(A=64\) tại \(x-y=4\)
Tham khảo nhé~
B A C M N E F Q
MK K QUEN VẼ TRÊN MÁY TÍNH LÊN HÌNH NÓ K ĐƯỢC CHUẨN , BẠN VẼ VOAFP VỞ THÌ CÂN CHÍNH XÁC HÔ NHÉ
bài làm
xét tám giác ABC có M là trung điểm của AB ; N là trung điểm của AC
áp dụng tc đường trung bình trong 1 tam giác ta có : MN // BC ; MN = \(\frac{1}{2}\) BC
Xét tứ giác BMNC ; có MN//BC ( cmt )
=> BMNC là thang( dn ............)
mà góc B = góc C ( tam giác ABC cân ) => BMNC là hình thang cân
có MN=\(\frac{1}{2}\) BC mà MN=6cm => BC=12
b)
có NM//BC => MN//BE (1)
có MN=\(\frac{1}{2}\)BC mà BE=\(\frac{1}{2}\) BC ( vì AE là đường trung tuyến => BE=EC=\(\frac{1}{2}\) BC )
=> MN=BE (2)
từ (1) và (2)
=> BMNE là hình bình hành ( 2 cạnh song song và = nhau)
c)
có tam giác ABC cân tại A => AB = AC
có AN=\(\frac{1}{2}AC\) ;\(AM=\frac{1}{2}AB\) mà AB=AC(cmt)
=> AN=AM
xét tứ giác AMEN có AM và AN là 2 cạnh kề mà AM=An => AMEN là hình thoi (dn............)
d)
có tam giác ABC cân tại A mà AE là đường trung tuyến => AE là đường cao => AE \(\perp BC\)
hay \(AF\perp BC\)
xét tứ giác ABFC có AF và BC là 2 đường chéo
mà \(AF\perp BC\)
=> ABFC là hình thoi (định nghĩa ......................)
e)
xét tứ giác AQCE
có AC và EQ là 2 đường chéo cắt tại N
mà N là trung điểm của AC ( đề bài )
N là trung điểm của EQ( tia đối )
=> AQCE là hình bình hành
mà AEC=900 ( vì \(AE\perp BC\left(cmt\right)\) )
=> AQCE là hình chữ nhật ( hình bình hành có 1 góc vuông là hình chữ nhật)
~~~~~~~~~~~~~~~~my love~~~~~~~~
k chắc nha , chỗ nào k hỏi add + ib hỏi mk ,
A F B C D E M 1 1 1 2
a, Ta có do: AD=2AB mà AD=2AF nên AF=AB
Mặt khác AF=BE(tự cm) và AB=EF nên AF=BE=AB=EF
suy ra AFEB là hình thoi suy ra \(AE\perp BF\)
b, ABCD là hình bình hành nên \(\widehat{A}=\widehat{C_1}=60^o\)(1)
Mà AF=AB nên \(\Delta AFB\)cân tại A có góc A =60 độ nên tam giác AFB đều suy ra \(\widehat{AFB}=60^o\)
mặt khác AD//BC \(\Rightarrow\widehat{AFB}=\widehat{FBE}=60^o\)(2)
Từ (1) và (2) suy ra FDCB là hình thang cân.
c, Ta có AB=BM=DC mà BM//DC nên BDCM là hình bình hành
lại có:
BF=AF mà AF=FD nên FD=BF suy ra \(\Delta FDB\)cân tại F \(\Rightarrow\widehat{D_1}=\widehat{B_1}=\frac{180^o-\widehat{BFD}}{2}=30^o\)
(đoạn này làm hơi tắt bạn tự tìm hiểu và triển khai nha)
Mà \(\widehat{D_1}+\widehat{D_2}=\widehat{ADC}=120^o\Rightarrow\widehat{D_2}=90^o\)
(đoạn này làm hơi tắt bạn tự tìm hiểu và triển khai nha)
Hình bình hành BDCM có góc D2=90 độ nên BDCM là hình chữ nhật