K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2

giúp em zới mn ưi :)

 


     

d,

Ta liệt kê các ước của số 70: 1, 2, 5, 7, 10, 14, 35, 70.

Ta xem xét từng số trong danh sách ước trên để tìm số nguyên x thỏa mãn yêu cầu.

- Khi x = 1, không chia hết cho 7.
- Khi x = 2, không chia hết cho 7.
- Khi x = 5, không chia hết cho 7.
- Khi x = 7, chia hết cho 7 và là ước của 70. Vậy x = 7 là một giá trị thỏa mãn yêu cầu.

Vậy, số nguyên x thỏa mãn yêu cầu là x = 7.

e,

Ta có thể thử từng giá trị của x để xem xét xem 2x - 1 có chia hết cho 30 hay không.

- Khi x = 1, ta có 2x - 1 = 2(1) - 1 = 1. 1 không chia hết cho 30.
- Khi x = 2, ta có 2x - 1 = 2(2) - 1 = 3. 3 không chia hết cho 30.
- Khi x = 3, ta có 2x - 1 = 2(3) - 1 = 5. 5 không chia hết cho 30.
- Khi x = 4, ta có 2x - 1 = 2(4) - 1 = 7. 7 không chia hết cho 30.
- Khi x = 5, ta có 2x - 1 = 2(5) - 1 = 9. 9 không chia hết cho 30.
- Khi x = 6, ta có 2x - 1 = 2(6) - 1 = 11. 11 không chia hết cho 30.
- Khi x = 7, ta có 2x - 1 = 2(7) - 1 = 13. 13 không chia hết cho 30.
- Khi x = 8, ta có 2x - 1 = 2(8) - 1 = 15. 15 không chia hết cho 30.
- Khi x = 9, ta có 2x - 1 = 2(9) - 1 = 17. 17 không chia hết cho 30.
- Khi x = 10, ta có 2x - 1 = 2(10) - 1 = 19. 19 không chia hết cho 30.
Từ các kết quả trên, ta thấy không có giá trị nào của x mà 2x - 1 là ước của 30. Vậy không có số nguyên x thỏa mãn điều kiện đề bài.

f,

Ta có thể thử từng giá trị của x và kiểm tra xem f(x+2) có phải là ước của 2x-1 :
Nếu x = 1:
f(1+2) = f(3)
2(1)-1 = 1
f(3) = 1
Ta thấy f(3) = 1 không phải là ước của 2(1)-1 = 1.
Nếu x = 2:
f(2+2) = f(4)
2(2)-1 = 3
f(4) = 3
Ta thấy f(4) = 3 không phải là ước của 2(2)-1 = 3.
Nếu x = 3:
f(3+2) = f(5)
2(3)-1 = 5
f(5) = 5
Ta thấy f(5) = 5 là ước của 2(3)-1 = 5.
Vậy, số nguyên x = 3 làm cho f(x+2) là ước của 2x-1.

Tham khỏa thôi nha.

a)

Số học sinh lớp 6a là:

\(26:\dfrac{13}{20}=40\left(hs\right)\)

b)

Số học sinh đạt là:

\(40\cdot\dfrac{1}{8}=5\left(hs\right)\)

Số học sinh ở mức khá là:

\(40-26-5=9\left(hs\right)\)

Đáp số: a) 40 học sinh

b) 9 học sinh và 5 học sinh

8 tháng 2

 Vì \(p\) là số nguyên tố lớn hơn 3 nên \(p\) có dạng \(3k+1\) hoặc \(3k+2\)

 TH1: Nếu \(p=3k+1\) thì vì p là SNT nên \(k\) chẵn \(\Rightarrow k=2n\) \(\Rightarrow p=6n+1\)

\(\Rightarrow\)\(P=\left(p-1\right)\left(p+1\right)\)

\(=6n\left(6n+2\right)\)

\(=12n\left(3n+1\right)\)

Nếu \(n\) chẵn thì \(n\left(3n+1\right)⋮2\) \(\Rightarrow P=12n\left(3n+1\right)⋮12.2=24\)

Nếu \(n\) lẻ thì \(3n+1⋮2\) \(\Rightarrow P=12n\left(3n+1\right)⋮12.2=24\)

Vậy \(P⋮24\), đpcm.

8 tháng 2

TH \(p=3k+2\) thì suy ra \(k\) lẻ \(\Rightarrow k=2n+1\) rồi xét tương tự nhé

8 tháng 2

\(\dfrac{1}{5}\cdot\dfrac{4}{7}+\dfrac{1}{5}\cdot\dfrac{3}{7}-\dfrac{1}{5}=\dfrac{1}{5}\cdot\left(\dfrac{4}{7}+\dfrac{3}{7}-1\right)=\dfrac{1}{5}\cdot\left(1-1\right)=0\)

________

\(\dfrac{3}{7}\cdot\dfrac{5}{8}+\dfrac{3}{7}\cdot\dfrac{11}{8}-\dfrac{3}{7}=\dfrac{3}{7}\cdot\left(\dfrac{5}{8}+\dfrac{11}{8}-1\right)=\dfrac{3}{7}\cdot\left(\dfrac{16}{8}-1\right)=\dfrac{3}{7}\cdot\left(2-1\right)=\dfrac{3}{7}\cdot1=\dfrac{3}{7}\) 

_______

\(12\left(\dfrac{7}{6}-\dfrac{8}{12}+\dfrac{29}{4}\right)=12\cdot\dfrac{7}{6}-12\cdot\dfrac{8}{12}+12\cdot\dfrac{29}{4}=14-8+87=93\) 

__________

\(58\cdot\left(3\dfrac{1}{29}-2\dfrac{1}{58}\right)=58\cdot\left(\dfrac{88}{29}-\dfrac{117}{58}\right)=58\cdot\dfrac{88}{29}-58\cdot\dfrac{117}{58}=176-117=59\)

8 tháng 2

\(\dfrac{5}{6}\).(\(\dfrac{1}{3}\) - \(\dfrac{7}{9}\)).\(\dfrac{12}{25}\) - \(\dfrac{5}{4}\)

 - \(\dfrac{5}{6}\).(-\(\dfrac{4}{9}\)).\(\dfrac{12}{25}\) - \(\dfrac{5}{4}\)

\(\dfrac{5.4.2.6}{6.9.5.5}\) - \(\dfrac{5}{4}\)

\(\dfrac{8}{45}\) - \(\dfrac{5}{4}\)

= -\(\dfrac{193}{180}\)

8 tháng 2

\(\dfrac{1}{5}.\left(\dfrac{1}{2}-\dfrac{7}{4}\right)-\dfrac{3}{4}.\left(\dfrac{1}{3}-\dfrac{11}{12}\right)\)

\(\dfrac{1}{5}.\left(-\dfrac{5}{4}\right)-\dfrac{3}{4}.\left(-\dfrac{7}{12}\right)\)

\(-\dfrac{1}{4}-\left(-\dfrac{7}{16}\right)\)

\(-\dfrac{1}{4}+\dfrac{7}{16}\)

     \(\dfrac{3}{16}\)

 

8 tháng 2

Đây là dạng toán nâng cao chuyên đề điểm và đoạn thẳng cấu trúc thi hsg, hôm nay olm.vn sẽ hướng dẫn em làm dạng này như sau:

Vì O;A; C thẳng hàng nên O \(\in\) AC;

Vì O;B;D thẳng hàng nên O \(\in\) DB 

Vậy O là giao điểm của AC  và BD.

Kết luận vị trí của điểm O sao cho ba điểm A; O; C và ba điểm; B;O;D thẳng hàng là O là giao điểm của AC và BD.

 

AH
Akai Haruma
Giáo viên
8 tháng 2

Lời giải:
a. 

$\frac{3n+2}{3}=n+\frac{2}{3}> n+\frac{1}{2}=\frac{2n+1}{2}$

$\Rightarrow \frac{3}{3n+2}< \frac{2}{2n+1}$
b.

$\frac{2n+1}{2n}=1+\frac{1}{2n}> 1+\frac{1}{3n}=\frac{1+3n}{3n}$

$\Rightarrow \frac{2n}{2n+1}< \frac{3n}{3n+1}$

8 tháng 2

\(\dfrac{3}{7}-\dfrac{1}{2}x=\dfrac{5}{3}\)

\(\Rightarrow\dfrac{1}{2}x=\dfrac{3}{7}-\dfrac{5}{3}\)

\(\Rightarrow x=2\cdot-\dfrac{26}{21}\)

\(\Rightarrow x=\dfrac{-52}{21}\) 

______

\(2x-\dfrac{3}{4}=\dfrac{-5}{8}\)

\(\Rightarrow2x=\dfrac{-5}{8}+\dfrac{3}{4}\)

\(\Rightarrow2x=\dfrac{1}{8}\)

\(\Rightarrow x=\dfrac{1}{8}:2\)

\(\Rightarrow x=\dfrac{1}{16}\) 

________

\(\dfrac{1}{4}x-\left(-\dfrac{7}{5}\right)=\dfrac{-5}{3}\)

\(\Rightarrow\dfrac{1}{4}x+\dfrac{7}{5}=\dfrac{-5}{3}\)

\(\Rightarrow\dfrac{1}{4}x=\dfrac{-5}{3}-\dfrac{7}{5}\)

\(\Rightarrow x=4\cdot-\dfrac{46}{15}\)

\(\Rightarrow x=-\dfrac{184}{15}\)

______

\(2\dfrac{1}{3}x-\dfrac{3}{4}=1\dfrac{1}{6}\)

\(\Rightarrow\dfrac{7}{3}x-\dfrac{3}{4}=\dfrac{7}{6}\)

\(\Rightarrow\dfrac{7}{3}x=\dfrac{7}{6}+\dfrac{3}{4}\)

\(\Rightarrow\dfrac{7}{3}x=\dfrac{23}{12}\)

\(\Rightarrow x=\dfrac{23}{12}:\dfrac{7}{3}\)

\(\Rightarrow x=\dfrac{23}{28}\) 

8 tháng 2

Bạn làm nốt cho mình bài trên dc ko

8 tháng 2

\(\dfrac{-5}{8}:\dfrac{15}{4}=\dfrac{-5}{8}\cdot\dfrac{4}{15}=\dfrac{-1\cdot1}{2\cdot3}=\dfrac{-1}{6}\)

\(\dfrac{-15}{17}:\dfrac{25}{-34}=\dfrac{-15}{17}\cdot\dfrac{-34}{25}=\dfrac{-3\cdot-2}{1\cdot5}=\dfrac{-6}{5}\)

\(-12:\dfrac{8}{3}=-12\cdot\dfrac{3}{8}=\dfrac{-12\cdot3}{8}=\dfrac{-3\cdot3}{2}=\dfrac{-9}{2}\)

\(\dfrac{-15}{14}:\dfrac{20}{-21}=\dfrac{-15}{14}\cdot\dfrac{-21}{20}=\dfrac{-3\cdot-3}{2\cdot4}=\dfrac{-9}{8}\)

\(-48:\dfrac{-24}{5}=-48\cdot\dfrac{5}{-24}=\dfrac{-48\cdot5}{-24}=2\cdot5=10\) 

\(\dfrac{-30}{7}:\dfrac{-5}{-14}=\dfrac{-30}{7}:\dfrac{5}{14}=\dfrac{-30}{7}\cdot\dfrac{14}{5}=\dfrac{-6\cdot2}{1\cdot1}=-18\) 

8 tháng 2

a) Gọi \(ƯCLN\left(a^2,a+b\right)=d\)  với \(d\inℕ^∗\)

\(\Rightarrow\left\{{}\begin{matrix}a^2⋮d\\a+b⋮d\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}a^2⋮d\\a^2+ab⋮d\end{matrix}\right.\) 

\(\Rightarrow ab⋮d\) 

Vì \(a,b\) nguyên tố cùng nhau \(\Rightarrow\left[{}\begin{matrix}a⋮d\\b⋮d\end{matrix}\right.\)

Hơn nữa, vì \(a+b⋮d\) nên nếu \(a⋮d\) thì \(b⋮d\). Nếu \(b⋮d\) thì \(a⋮d\). Như vậy \(a,b⋮d\).

 Nhưng do \(a,b\) nguyên tố cùng nhau nên \(d=1\) \(\RightarrowƯCLN\left(a^2,a+b\right)=1\) hay \(a^2,a+b\) nguyên tố cùng nhau.

b) Gọi \(ƯCLN\left(ab,a+b\right)=d\)

\(\Rightarrow\left\{{}\begin{matrix}ab⋮d\\a+b⋮d\end{matrix}\right.\)

 Vì a và b nguyên tố cùng nhau nên từ \(ab⋮d\Rightarrow\left[{}\begin{matrix}a⋮d\\b⋮d\end{matrix}\right.\). Đến đây kết hợp với \(a+b⋮d\)  và lập luận tương tự như câu a), sẽ chứng minh được \(d=1\)