Giải giúp mình bài này vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cô-si cho hai số dương x và y, ta có: \(\sqrt{xy}\le\frac{x+y}{2}\)
\(\Leftrightarrow\sqrt{xy}+y\le\frac{x+y}{2}+y=\frac{x+y+2y}{2}=\frac{x+3y}{2}\)
\(\Leftrightarrow\frac{x+3y}{\sqrt{xy}+y}\ge\frac{x+3y}{\frac{x+3y}{2}}=2\)
Dấu "=" xảy ra khi \(x=y\)
Vậy GTNN của P là 2 khi \(x=y\)
\(S=a+\frac{1}{a}=\frac{a}{9}+\frac{8a}{9}>2\sqrt{\frac{a}{9}.\frac{1}{a}}+\frac{8a}{9}=2.\frac{1}{3}+\frac{8a}{a}>\frac{2}{3}+\frac{8.3}{9}=\frac{2}{3}+\frac{8}{3}=\frac{10}{3}.\)
\(S_{min}=\frac{10}{3}=a^2=9=a=3\)
\(S=a+\frac{1}{a}=a+\frac{9}{a}-\frac{8}{a}\)
\(=\left(a+\frac{9}{a}\right)-\frac{8}{a}\ge2\sqrt{a.\frac{9}{a}}-\frac{8}{a}\)(BĐT Cauchy)
\(=6-\frac{8}{a}\)
Vì \(a\ge3\Rightarrow\frac{8}{a}\le\frac{8}{3}\Rightarrow-\frac{8}{a}\ge-\frac{8}{3}\)
=> \(6-\frac{8}{a}\ge6-\frac{8}{3}=\frac{10}{3}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}a=\frac{9}{a}\\a=3\end{cases}}\Leftrightarrow a=3\)
Vậy MIN S = 10/3 khi a = 3
Cho đường thẳng y = ( m – 3) x + n ( d) . Tìm m và n để :
a) Đường thẳng (d) cắt đường thẳng y = 12 𝑥− 32 khi \(m-3\ne12\Leftrightarrow m\ne15\)
b) Đường thẳng (d) song song với đường thẳng y = −32 𝑥+ 3 \(\text{ }\text{ }\text{ }\hept{\begin{cases}m-3=-32\\n\ne3\end{cases}}\Leftrightarrow\hept{\begin{cases}m=-29\\n\ne3\end{cases}}\)
c) Đường thẳng (d) trùng với đường thẳng y = 2x + 3 khi \(\hept{\begin{cases}m-3=2\\n=3\end{cases}\Leftrightarrow\hept{\begin{cases}m=5\\n=3\end{cases}}}\)
\(ĐK:x\ge\frac{2020}{2021}\)
\(PT\Leftrightarrow x^2-2x+2+2021x-2020=2\sqrt{2021x-2020}\)
\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{2021x-2020}-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\\sqrt{2021x-2020}-1=0\end{cases}}\)
\(\Leftrightarrow x=1\left(tmđk\right)\)