Trên 2 cạnh Ox,Oy của \(\widehat{xOy}\) lần lượt lấy hai điểm A,B chuyển động sao cho OA - OB=k. CM đường thẳng đi qua trọng tâm G của tam giác AOB và vuông góc với AB luôn đi 1 điểm cố định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta lay cac canh cua Hinh tam giac do cong voi nhau
Cần giải giúp 1 bài nhanh nhé
Rút gọn
\(P=\frac{x^2}{xy+y^2}+\frac{y^2}{xy-x^2}-\frac{x^2+y^2}{xy}\)
bạn biết bđt svác sơ chứ nếu không biết có thể lên mạng tra
Áp dụng bđt svác sơ ta có
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+2b};\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\ge\frac{9}{b+2c};\frac{1}{c}+\frac{1}{a}+\frac{1}{a}\ge\frac{9}{c+2a}\)
cộng vào ta có
\(3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)
Thêm câu nữa bạn
Rút gọn
\(P=\frac{x^2}{xy+y^2}+\frac{y^2}{xy-x^2}-\frac{x^2+y^2}{xy}\)