K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2017

hih như là + \(\sqrt[3]{16}\)\(\sqrt[3]{40}\)

nếu thế thì từ đề =[\(\left(\sqrt[3]{10}\right)^2\)-\(\sqrt[3]{10}.\sqrt[3]{4}\)+\(\left(\sqrt[3]{4}\right)^2\)](\(\sqrt[3]{10}\)+\(\sqrt[3]{4}\))

                           = \(\left(\sqrt[3]{10}+\sqrt[3]{4}\right)^3\)

6 tháng 10 2017

    \(\left(\sqrt[3]{100}+\sqrt[3]{40}-\sqrt[3]{16}\right).\left(\sqrt[3]{10}+\sqrt[3]{4}\right)\)

\(\approx20,736\)

6 tháng 10 2017

Em ms lớp 8............Chịu!!!

6 tháng 10 2017

em mới lớp 6 cx chịu

7 tháng 10 2017

Ta có:

\(\left(x+y+1\right)xy=x^2+y^2\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=\frac{1}{x^2}+\frac{1}{y^2}\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)^2+\frac{3}{4}\left(\frac{1}{x}-\frac{1}{y}\right)^2\ge\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)^2\)

\(\Leftrightarrow0\le\frac{1}{x}+\frac{1}{y}\le4\)

Ta lại có:

\(\frac{1}{x^3}+\frac{1}{y^3}=\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{x^2}-\frac{1}{xy}+\frac{1}{y^2}\right)=\left(\frac{1}{x}+\frac{1}{y}\right)^2\le16\)

PS: Sửa đề tìm max nhé