S = \(\dfrac{3}{2}\)+ \(\dfrac{7}{6}\)+\(\dfrac{13}{12}\)+...+\(\dfrac{9901}{9900}\)
Xin giúp với!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = \(\dfrac{3}{2}\)+ \(\dfrac{7}{6}\)+\(\dfrac{13}{12}\)+...+\(\dfrac{9901}{9900}\)
Xin giúp với!!!
a: Xét ΔABC có AD là phân giác
nên \(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos\left(\dfrac{BAC}{2}\right)\)
=>\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos\left(\dfrac{120}{2}\right)=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos60\)
=>\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot\dfrac{1}{2}=\dfrac{AB\cdot AC}{AB+AC}\)
=>\(\dfrac{1}{AD}=\dfrac{AB+AC}{AB\cdot AC}=\dfrac{1}{AB}+\dfrac{1}{AC}\)
b: \(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos\left(\dfrac{BAC}{2}\right)\)
=>\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos45=\dfrac{2\cdot AB\cdot AC\sqrt{2}}{2\left(AB+AC\right)}=\dfrac{AB\cdot AC\cdot\sqrt{2}}{AB+AC}\)
=>\(\dfrac{1}{AD}=\dfrac{AB+AC}{AB\cdot AC}\cdot\dfrac{1}{\sqrt{2}}\)
=>\(\dfrac{\sqrt{2}}{AD}=\dfrac{AB+AC}{AB\cdot AC}=\dfrac{1}{AB}+\dfrac{1}{AC}\)
c: \(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos\left(\dfrac{BAC}{2}\right)\)
=>\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos\left(\dfrac{60}{2}\right)\)
=>\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos30=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot\dfrac{\sqrt{3}}{2}\)
=>\(\dfrac{AD}{\sqrt{3}}=\dfrac{AB\cdot AC}{AB+AC}\)
=>\(\dfrac{\sqrt{3}}{AD}=\dfrac{AB+AC}{AB\cdot AC}=\dfrac{1}{AB}+\dfrac{1}{AC}\)
Chúng đều được định nghĩa dựa trên các cạnh của tam giác vuông và góc nhọn trong tam giác đó. Sin: Tỷ số giữa cạnh đối diện với góc nhọn và cạnh huyền của tam giác vuông. Cos: Tỷ số giữa cạnh kề với góc nhọn và cạnh huyền của tam giác vuông. Tan: Tỷ số giữa cạnh đối diện và cạnh kề của góc nhọn trong tam giác vuông.
@ ánh lê Copy phải ghi Tk nhé!
Tk = Tham khảo
A = {20; 30; 40; 50; 60; 70}
A = {x ∈ N|12 < x ≤ 70 và x ⋮ 10}
ĐKXĐ: x>=0
\(\dfrac{2\sqrt{x}-6}{x-\sqrt{x}+1}< 0\)
mà \(x-\sqrt{x}+1=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}>0\forall x\) thỏa mãn ĐKXĐ
nên \(2\sqrt{x}-6< 0\)
=>\(\sqrt{x}< 3\)
=>0<=x<9
3 x 3 - 8 x 6
= 9 - 48
= - 39
2 x 15 + 6 - 7
= 30 + 6 - 7
= 36 - 7
= 29
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-2\\y\ne-1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{2x}{x+2}-\dfrac{3y}{y+1}=-4\\\dfrac{x}{x+2}+\dfrac{2y}{y+1}=\dfrac{1}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{2x+4-4}{x+2}-\dfrac{3y+3-3}{y+1}=-4\\\dfrac{x+2-2}{x+2}+\dfrac{2y+2-2}{y+1}=\dfrac{1}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2-\dfrac{4}{x+2}-3+\dfrac{3}{y+1}=-4\\1-\dfrac{2}{x+2}+2-\dfrac{2}{y+1}=\dfrac{1}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-\dfrac{4}{x+2}+\dfrac{3}{y+1}=-4-2+3=-6+3=-3\\-\dfrac{2}{x+2}-\dfrac{2}{y+1}=\dfrac{1}{3}-3=-\dfrac{8}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{-4}{x+2}+\dfrac{3}{y+1}=-3\\\dfrac{-4}{x+2}-\dfrac{4}{y+1}=-\dfrac{16}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-4}{x+2}+\dfrac{3}{y+1}+\dfrac{4}{x+2}+\dfrac{4}{y+1}=-3+\dfrac{16}{3}\\\dfrac{-4}{x+2}-\dfrac{4}{y+1}=-\dfrac{16}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{7}{y+1}=\dfrac{7}{3}\\\dfrac{1}{x+2}+\dfrac{1}{y+1}=\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y+1=3\\\dfrac{1}{x+2}=\dfrac{4}{3}-\dfrac{1}{3}=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=2\\x=-1\end{matrix}\right.\left(nhận\right)\)
50-(20+40)
=50-60=-10
\(30+\left(31+69\right)-210\)
\(=30+100-210\)
\(=30-110=-80\)
ĐKXĐ: x<>-2
\(\dfrac{x-3}{x+2}>=0\)
TH1: \(\left\{{}\begin{matrix}x-3>=0\\x+2>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=3\\x>-2\end{matrix}\right.\)
=>x>=3
TH2: \(\left\{{}\begin{matrix}x-3< =0\\x+2< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< =3\\x< -2\end{matrix}\right.\)
=>x<-2
\(S=\dfrac{3}{2}+\dfrac{7}{6}+\dfrac{13}{12}+...+\dfrac{9901}{9900}\)
\(=1+\dfrac{1}{2}+1+\dfrac{1}{6}+...+1+\dfrac{1}{9900}\)
\(=\left(1+1+1+...+1\right)+\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\right)\)
\(=99+\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=99+\left(1-\dfrac{1}{100}\right)=100-\dfrac{1}{100}=\dfrac{10000-1}{100}=\dfrac{9999}{100}\)
S = ( 1+\(\dfrac{1}{2}\) ) + ( 1 + \(\dfrac{1}{6}\) ) + .... + ( 1 + \(\dfrac{1}{9900}\) )
= 9900 + ( \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + ..... + \(\dfrac{1}{99.100}\) )
= 9900 + ( 1 - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + ..... + \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\) )
= 9900 + 1 - \(\dfrac{1}{100}\)
= 9901 - \(\dfrac{1}{100}\)