K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2018

(đã xóa câu trả lời) _by tth

4 tháng 10 2018

\(x+y=5\)

,=>  \(\left(x+y\right)^3=125\)

<=>  \(x^3+y^3+3xy\left(x+y\right)=125\)

<=>  \(x^3+y^3+3.3.5=125\)

<=> \(x^3+y^3=80\)

Vậy...

4 tháng 10 2018

Chả biết đúng hay sai :v làm thử 

\(a)\) Với \(\hept{\begin{cases}x+1\ge0\\x\ge0\\x-1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\ge0\\x\ge1\end{cases}\Leftrightarrow}x\ge1}\) ta có : 

\(\left(x+1\right)^2+x^2+\left(x-1\right)^2=2\)

\(\Leftrightarrow\)\(\left(x+1+x-1\right)^2-2\left(x+1\right)\left(x-1\right)+x^2=2\)

\(\Leftrightarrow\)\(4x^2-2x^2+2+x^2=2\)

\(\Leftrightarrow\)\(3x^2=0\)

\(\Leftrightarrow\)\(x^2=0\)

\(\Leftrightarrow\)\(x=0\) ( không thỏa mãn ) 

Với \(\hept{\begin{cases}x+1< 0\\x< 0\\x-1< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -1\\x< 0\\x< 1\end{cases}\Leftrightarrow}x< -1}\) ta có : 

\(\left[-\left(x+1\right)\right]^2+\left(-x\right)^2+\left[-\left(x-1\right)\right]^2=2\)

\(\Leftrightarrow\)\(\left(x+1\right)^2+x^2+\left(x-1\right)^2=2\)

Đến đây giải giống như trên nha bạn 

\(\Leftrightarrow\)\(x=0\) ( không thỏa mãn ) 

Vậy không có giá trị x thỏa mãn đề bài 

Chúc bạn học tốt ~ 

3 tháng 10 2018

\(\left(x-1\right)^2+2\left(x-1\right)\left(3x+1\right)+\left(3x+1\right)^2-16x^2\)

\(=\left(x-1+3x+1\right)^2-16x^2\)

\(=\left(4x\right)^2-16x^2\)

\(=16x^2-16x^2\)

\(=0\)

3 tháng 10 2018

\(5x\left(3x^2-4x+2\right)\)

\(=5x.3x^2-5x.4x+5x.2\)

\(=15x^3-20x^2+10x\)

hk tốt

^^

4 tháng 10 2018

Đặt \(\frac{a-b}{c}=x;\frac{b-c}{a}=y;\frac{c-a}{b}=z\Rightarrow\frac{c}{a-b}=\frac{1}{x};\frac{a}{b-c}=\frac{1}{y};\frac{b}{c-a}=\frac{1}{z}\)

Vì a+b+c=0 => a=-b-c ; b=-c-a ; c=-a-b 

                         a3+b3+c3=3abc

Ta có: \(\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right)=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3+\frac{x+z}{y}+\frac{x+y}{z}+\frac{y+z}{x}\)

Lại có: \(\frac{x+z}{y}=\left(x+z\right)\cdot\frac{1}{y}=\left(\frac{a-b}{c}+\frac{c-a}{b}\right)\cdot\frac{a}{b-c}=\frac{ab-b^2+c^2-ac}{bc}\cdot\frac{a}{b-c}\)

\(=\frac{a\left(b-c\right)-\left(b-c\right)\left(b+c\right)}{bc}\cdot\frac{a}{b-c}=\frac{\left(a-b-c\right)\left(b-c\right)}{bc}\cdot\frac{a}{b-c}=\frac{a\left(a+a\right)}{bc}=\frac{2a^2}{bc}=\frac{2a^3}{abc}\)

Tượng tự \(\frac{x+y}{z}=\frac{2b^3}{abc};\frac{y+z}{x}=\frac{2c^3}{abc}\)

Do đó \(\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right)=3+\frac{2a^3+2b^3+2c^3}{abc}=3+\frac{2\left(a^3+b^3+c^3\right)}{abc}=3+\frac{2.3abc}{abc}=9\)

=>đpcm

4 tháng 10 2018

Sao phải phức tạp thế?