Cho ΔABC nhọn H la trực tâm của ∆ gọi D là điểm đối xứng qua BC
a) C/m góc BCD = góc BAD
b) C/m tứ giác ABCD có các góc đối bằng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n+3\right)\left(n^2-1\right)=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)
Vì n lẻ nên n-1 và n+1 là 2 số chẵn liên tiếp mà trong 2 số chẵn liên tiếp có 1 số là bội của 4 nên tích của chúng chia hết cho 8
=>(n-1)(n+1) chia hết cho 8
=>\(A=\left(n+3\right)\left(n-1\right)\left(n+1\right)⋮8\)
=>đpcm
x + x2 - x3 - x4 = 0
x.(1+x) - x3.(1+x) = 0
x.(1+x).(1-x2) = 0
x.(1+x).(12 -x2) = 0
x.(1+x).(1+x).(1-x) = 0
x.(1+x)2.(1-x) = 0
=> x = 0
(1+x)2 = 0 => 1 + x =0 => x = -1
1-x = 0 => x = 1
KL:...
\(x+y=5\)
,=> \(\left(x+y\right)^3=125\)
<=> \(x^3+y^3+3xy\left(x+y\right)=125\)
<=> \(x^3+y^3+3.3.5=125\)
<=> \(x^3+y^3=80\)
Vậy...
Chả biết đúng hay sai :v làm thử
\(a)\) Với \(\hept{\begin{cases}x+1\ge0\\x\ge0\\x-1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\ge0\\x\ge1\end{cases}\Leftrightarrow}x\ge1}\) ta có :
\(\left(x+1\right)^2+x^2+\left(x-1\right)^2=2\)
\(\Leftrightarrow\)\(\left(x+1+x-1\right)^2-2\left(x+1\right)\left(x-1\right)+x^2=2\)
\(\Leftrightarrow\)\(4x^2-2x^2+2+x^2=2\)
\(\Leftrightarrow\)\(3x^2=0\)
\(\Leftrightarrow\)\(x^2=0\)
\(\Leftrightarrow\)\(x=0\) ( không thỏa mãn )
Với \(\hept{\begin{cases}x+1< 0\\x< 0\\x-1< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -1\\x< 0\\x< 1\end{cases}\Leftrightarrow}x< -1}\) ta có :
\(\left[-\left(x+1\right)\right]^2+\left(-x\right)^2+\left[-\left(x-1\right)\right]^2=2\)
\(\Leftrightarrow\)\(\left(x+1\right)^2+x^2+\left(x-1\right)^2=2\)
Đến đây giải giống như trên nha bạn
\(\Leftrightarrow\)\(x=0\) ( không thỏa mãn )
Vậy không có giá trị x thỏa mãn đề bài
Chúc bạn học tốt ~