Tính đạo hàm cấp hai của hàm số y = tanx
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NL
2
6 tháng 10 2020
\(\sin^25x+1=\cos^23x\)
<=> \(\sin^25x+1-\cos^23x=0\)
<=> \(\frac{1-\cos10x}{2}+1-\frac{\cos6x+1}{2}=0\)
<=> \(\cos10x+\cos6x=2\)
Mà \(\cos10x;\cos6x\ge1\)=> \(\cos10x+\cos6x\ge2\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\cos10x=1\\\cos6x=1\end{cases}}\Leftrightarrow\hept{\begin{cases}10x=k2\pi\\6x=l2\pi\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{k\pi}{5}\\x=\frac{l\pi}{3}\end{cases}};k,l\in Z\Leftrightarrow x=m\pi;m\in\)
PV
0
y′n =2sinxcos3xy″=2sinxcos3x
\(y^n=\)\(\frac{2\sin x}{\cos^3x}\)