Đề thi đại học sư phạm năm 2004
Tìm m để hệ pt sau có nghiệm thực :
\(\hept{\begin{cases}x+\frac{1}{x}+y+\frac{1}{y}=5\\x^3+\frac{1}{x^3}+y^3+\frac{1}{y^3}=15m-10\end{cases}}\)
Sử dụng hệ phương trình đối xứng loại I nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(3x=1-\sqrt[3]{\frac{25+\sqrt{621}}{2}}-\sqrt[3]{\frac{25-\sqrt{621}}{2}}\)
<=> \(1-3x=\sqrt[3]{\frac{25+\sqrt{621}}{2}}+\sqrt[3]{\frac{25-\sqrt{621}}{2}}\)
<=> \(\left(1-3x\right)^3=\left(\sqrt[3]{\frac{25+\sqrt{621}}{2}}+\sqrt[3]{\frac{25-\sqrt{621}}{2}}\right)^3\)
<=> \(1-9x+27x^2-27x^3=\frac{25+\sqrt{621}}{2}+\frac{25-\sqrt{621}}{2}+3\left(\frac{25+\sqrt{621}}{2}\cdot\frac{25-\sqrt{621}}{2}\right)\left(1-3x\right)\)( vì \(\sqrt[3]{\frac{25+\sqrt{621}}{2}}+\sqrt[3]{\frac{25-\sqrt{621}}{2}}=1-3x\)....phía trên 2 dòng )
<=> \(1-9x+27x^2-27x^3=25+3\cdot1\cdot\left(1-3x\right)\)
<=> \(1-9x+27x^2-27x^3=25+3-9x\)
<=> \(1-9x+27x^2-27x^3=28-9x\)
<=> \(27x^3-27x^2+27=0\)
<=.\(27\left(x^3-x^2+1\right)=0\)
<=. \(x^3-x^2+1=0\)
pt \(x^3-x^2+1=0\) và pt \(x^5+x+1=0\) đều có nghiệm chung
vậy đccm
Ta có S m-n = (√2 + 1)m /(√2 + 1)n + (√2 - 1)m /(√2 - 1)n = (√2 + 1)m (√2 - 1)n + (√2 - 1)m (√2 + 1)n
Từ đó
S m+n + S m-n = (√2 + 1)m+n + (√2 - 1)m+n +(√2 + 1)m (√2 - 1)n + (√2 - 1)m (√2 + 1)n
= (√2 + 1)m [(√2 + 1)n + (√2 -1)n] + (√2 - 1)m [(√2 - 1)n + (√2 + 1)n]
= [(√2 + 1)n + (√2 - 1)n] [(√2 + 1)m + (√2 - 1)m]
= S m .S n
sorry mk ko bít!!! ^^
6476575756876982525435465658768768676968256346564576576576
Cô làm tiếp nhé. \(\hept{\begin{cases}u+v=5\\uv=8-m\end{cases}\Rightarrow\hept{\begin{cases}u=5-v\\\left(5-v\right)v=8-m\left(1\right)\end{cases}}}\)
\(\left(1\right)\Rightarrow v^2-5v+8-m=0\left(2\right)\)
Để phương trình (2) có nghiệm thực thì \(\Delta\ge0\Leftrightarrow5^2-4\left(8-m\right)\ge0\Rightarrow4m-7\ge0\Rightarrow m\ge\frac{7}{4}\).
Đặt : \(\hept{\begin{cases}u=x+\frac{1}{x}\\v=y+\frac{1}{y}\end{cases}}\)Điều kiện : \(\orbr{\begin{cases}u\ge2\\u\le2\end{cases}}\)và \(\orbr{\begin{cases}v\ge2\\v\le2\end{cases}}\)
Tách : \(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)^3-3.x\frac{1}{x}\left(x+\frac{1}{x}\right)=u^3-3u\)
Tương tự : \(y^3+\frac{1}{x^3}=v^3-3v\)
PT trên trở thành : \(\hept{\begin{cases}u+v=5\\u^3-3u+v^3-3v=15m-10\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}u+v=5\\\left(u+v\right)^3-3uv\left(u+v\right)-3\left(u+v\right)=15m-10\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}u+v=5\\uv=8-m\end{cases}}\)
Cô ơi e làm được đến đây cô làm tiếp dùm e nha