chị QA
ta có đề bài <=>
\(\frac{x^2}{y}-2x+y+\frac{y^2}{z}-2y+z+\frac{z^2}{x}-2z+x+\left(x+y+z\right)-\left(x-y\right)^2-\left(y-z\right)^2-\left(z-x\right)^2\)
=\(\frac{\left(x-y\right)^2}{y}-\left(x-y\right)^2+...+\left(x+y+z\right)\)
=\(\left(x-y\right)^2\left(\frac{1}{y}-1\right)+....+\left(x+y+z\right)\)
mà \(\sqrt{x}+\sqrt{y}+\sqrt{z}=1\Rightarrow x,y,z\in\left[0;1\right]\)
=> \(\frac{1}{y}-y>0\)
=> \(A\ge x+y+z\ge\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{3}=\frac{1}{3}\)