Ba máy bơm cùng bơm nước vào một bể bơi không có nước, có dạng hình hộp chữ nhật với các kích thước bể là 12m, 10m, 1.2m. Lượng nước mà ba máy bơm được tỉ lệ với ba số 7 ; 8; 9. Mỗi máy cần bơm bao nhiêu mét khối nước nữa để đầy bể bơi?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thể tích bể:
12 . 10 . 1,2 = 144 (m³)
Gọi x (m³), y (m³), z (m³) lần lượt là số m³ mà máy bơm thứ nhất, máy bơm thứ hai và máy bơm thứ ba phải bơm (x, y, z > 0)
Ta có: x + y + z = 144 (m³)
Do lượng nước bơm được của ba máy tỉ lệ với 7; 8; 9 nên:
x/7 = y/8 = z/9
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/7 = y/8 = z/9 = (x + y + z)/(7 + 8 + 9) = 144/24 = 6
x/7 = 6 ⇒ x = 7.6 = 42 (nhận)
y/8 = 6 ⇒ y = 8.6 = 48 (nhận)
z/9 = 6 ⇒ z = 9.6 = 54 (nhận)
Vậy số m³ nước ba máy bơm để đầy bể lần lượt là: 42 m³, 48 m³, 54 m³
Gọi \(x;y;z\left(x;y;z>0\right)\) lần lượt là lượng nước của 3 máy bơm
Thể tích bể là : \(12.10.1,2=144\left(m^3\right)\)
Theo đề ta có :
\(\dfrac{x}{7}=\dfrac{y}{8}=\dfrac{z}{9}=\dfrac{x+y+z}{7+8+9}=\dfrac{144}{24}=6\)
\(\Rightarrow\left\{{}\begin{matrix}x=7.6=42\\y=8.6=48\\z=9.6=54\end{matrix}\right.\)
Vậy mỗi máy lần lượt cần bơm để đầy bể
\(144-42=102m^3\)
\(144-48=96m^3\)
\(144-54=90m^3\)
\(\dfrac{8}{7}:\left(\dfrac{2}{9}-\dfrac{1}{18}\right)+\dfrac{7}{8}:\left(\dfrac{1}{36}-\dfrac{5}{12}\right)\)
\(=\dfrac{8}{7}:\left(\dfrac{4}{18}-\dfrac{1}{18}\right)+\dfrac{7}{8}:\left(\dfrac{1}{36}-\dfrac{15}{36}\right)\)
\(=\dfrac{8}{7}:\dfrac{1}{6}+\dfrac{7}{8}:\dfrac{-7}{18}\)
\(=\dfrac{8}{7}.6+\dfrac{7}{8}.\dfrac{-18}{7}\)
\(=\dfrac{129}{28}\)
\(Z=\dfrac{3a+4}{a+2}=\dfrac{3\left(a+2\right)-2}{a+2}=3-\dfrac{2}{a+2}\)
Vì \(3\inℤ\) nên để \(Z\inℤ\) thì \(\dfrac{2}{a+2}\inℤ\) hay \(a+2\inƯ\left(2\right)\)
\(\Rightarrow a+2\in\left\{\pm1;\pm2\right\}\) \(\Rightarrow a\in\left\{-3;-1;-4;0\right\}\)
Vậy để \(Z\inℤ\) thì \(a\in\left\{-4;-3;-1;0\right\}\)
Để Z là số nguyên : \(\Leftrightarrow\dfrac{3a+4}{a+2}\in Z\)
Xét \(Z=\dfrac{3a+4}{a+2}\)
\(Z=\dfrac{3a+6-2}{a+2}\)
\(Z=\dfrac{3a+6}{a+2}-\dfrac{2}{a+2}=3-\dfrac{2}{a+2}\)
Để \(Z\) là số nguyên :
\(\Leftrightarrow\dfrac{2}{a+2}\in Z\Leftrightarrow\left(a+2\right)\inƯ\left(2\right)\)
Do đó : ta có bảng
a+2 | 1 | -1 | 2 | -2 |
a | -1 | -3 | 0 | -4 |
Vậy............
\(\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{40.42}\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{40}-\dfrac{1}{42}\right)\)
\(=\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{42}\right)\)
\(=\dfrac{1}{2}.\dfrac{10}{21}\)
\(=\dfrac{5}{21}\)
\(#Wendy.Dang\)
\(\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+...+\dfrac{1}{40\cdot42}\)
\(=\dfrac{1}{2}\cdot\left(2\cdot\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+...+\dfrac{1}{40\cdot42}\right)\)
\(=\dfrac{1}{2}\cdot\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{40\cdot42}\right)\)
\(=\dfrac{1}{2}\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-...+\dfrac{1}{40}-\dfrac{1}{42}\right)\)
\(=\dfrac{1}{2}\cdot\left(1-\dfrac{1}{42}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{41}{42}\)
\(=\dfrac{41}{84}\)
\(\dfrac{1}{7}+\dfrac{1}{91}+\dfrac{1}{247}+\dfrac{1}{475}+\dfrac{1}{775}+\dfrac{1}{1147}\)
\(=\dfrac{1}{1.7}+\dfrac{1}{7.13}+\dfrac{1}{13.19}+\dfrac{1}{19.25}+\dfrac{1}{25.31}+\dfrac{1}{31.37}\)
\(=\dfrac{1}{6}\left(1-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{25}+\dfrac{1}{25}-\dfrac{1}{31}+\dfrac{1}{31}-\dfrac{1}{37}\right)\)
\(=\dfrac{1}{6}\left(1-\dfrac{1}{37}\right)\)
\(=\dfrac{1}{6}.\dfrac{36}{37}\)
\(=\dfrac{6}{37}\)
\(#Wendy.Dang\)
Bài 1 a, -5 \(\in\) Q; b, \(\dfrac{2}{-3}\) \(\notin\) I; c, \(\dfrac{3}{-5}\) \(\in\) R
d, N \(\subset\) Z \(\subset\) Q \(\subset\) R
e, -\(\sqrt{25}\) \(\notin\) N; f, \(\sqrt{17}\) \(\in\) R
Bài 2
a, -0,33 \(\in\) Q; b, 0,5241 \(\notin\) I;
c, 1,4142135... \(\in\) R; d, Q \(\subset\) R
`#040911`
`b)`
\(x+\dfrac{1}{2}-x-\dfrac{2}{3}=\dfrac{1}{2}\\ \Rightarrow x+\dfrac{1}{2}-x-\dfrac{2}{3}-\dfrac{1}{2}=0\\ \Rightarrow\left(x-x\right)+\left(\dfrac{1}{2}-\dfrac{2}{3}-\dfrac{1}{2}\right)=0\\ \Rightarrow-\dfrac{2}{3}=0\left(\text{vô lý}\right)\\ \text{Vậy, }x\in\varnothing\)
`c)`
\(\left|x+1\right|=5\\ \Rightarrow\left[{}\begin{matrix}x+1=5\\x+1=-5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5-1\\x=-5-1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=4\\x=-6\end{matrix}\right.\\ \text{Vậy, }x\in\left\{-6;4\right\}.\)
\(x+\dfrac{1}{2}-x-\dfrac{2}{3}=\dfrac{1}{2}\\ -\dfrac{2}{3}=\dfrac{1}{2}-\dfrac{1}{2}\\ -\dfrac{2}{3}=0\left(vô.lí\right)\\ Không.x.thoả\\ ----\\ \left|x+1\right|=5\\ \Leftrightarrow\left[{}\begin{matrix}x+1=5\\x+1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-6\end{matrix}\right.\)
`#040911`
`a)`
`2x^2 - 3x = 0`
`\Rightarrow x(2x - 3) = 0`
`\Rightarrow`\(\left[{}\begin{matrix}x=0\\2x-3=0\end{matrix}\right.\)
`\Rightarrow`\(\left[{}\begin{matrix}x=0\\2x=3\end{matrix}\right.\)
`\Rightarrow`\(\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy, \(x\in\left\{0;\dfrac{3}{2}\right\}\)
`b)`
\(x+\dfrac{1}{2}-z-\dfrac{2}{3}=\dfrac{1}{2}?\)
Bạn xem lại đề
`c)`
\(x^3-x^2=0\\ \Rightarrow x^2\cdot\left(x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x^2=0\\x-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy, \(x\in\left\{0;1\right\}.\)
\(a,2x^2-3x=0\\ \Leftrightarrow x\left(2x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\\ b,Xem.lại,đề\\ c,x^3-x^2=0\\ \Leftrightarrow x^2.\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Thể tích bể bơi là: 12 x 10 x 1,2 = 144 (m3)
Gọi lượng nước mà mỗi máy bơm cần bơm vào bể lần lượt là:
\(x;y;z\) (m3); \(x;y;z>0\)
Theo bài ra ta có: \(\dfrac{x}{7}=\dfrac{y}{8}=\dfrac{z}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{7}=\dfrac{y}{8}=\dfrac{z}{9}\) = \(\dfrac{x+y+z}{7+8+9}\) = \(\dfrac{144}{24}\) = 6
\(x\) = 6 x 7 = 42
y = 6 x 8 = 48
z = 6 x 9 = 54
Kết luận lượng nước mà mỗi máy cần bơm để hồ đầy theo thứ tự lần lượt là:
42 m3; 48 m3; 54 m3
Thể tích bể:
12 . 10 . 1,2 = 144 (m³)
Gọi x (m³), y (m³), z (m³) lần lượt là số m³ mà máy bơm thứ nhất, máy bơm thứ hai và máy bơm thứ ba phải bơm (x, y, z > 0)
Ta có: x + y + z = 144 (m³)
Do lượng nước bơm được của ba máy tỉ lệ với 7; 8; 9 nên:
x/7 = y/8 = z/9
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/7 = y/8 = z/9 = (x + y + z)/(7 + 8 + 9) = 144/24 = 6
x/7 = 6 ⇒ x = 7.6 = 42 (nhận)
y/8 = 6 ⇒ y = 8.6 = 48 (nhận)
z/9 = 6 ⇒ z = 9.6 = 54 (nhận)
Vậy số m³ nước ba máy bơm để đầy bể lần lượt là: 42 m³, 48 m³, 54 m³