K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2017

Áp dụng bất đẳng thứ Cauchy (AM-GM):

\(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\ge3\sqrt[3]{\frac{\left(xyz\right)^2}{xyz}}=3\sqrt[3]{xyz}\)

Mà: \(0\le xyz\le1\Leftrightarrow xyz=1\)

Từ đó: \(\hept{\begin{cases}xy=\frac{1}{z}\\\frac{xy}{z}\end{cases}\Leftrightarrow\frac{1}{z^2}}\)  (1)

Tương tự: \(\hept{\begin{cases}yz=\frac{1}{x}\\\frac{yz}{x}\end{cases}\Leftrightarrow\frac{1}{x^2}}\)  (2) 

Và:  \(\hept{\begin{cases}zx=\frac{1}{y}\\\frac{zx}{y}\end{cases}}\Leftrightarrow\frac{1}{y^2}\)  (3) 

Từ trên (1)(2)(3): \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=3\) (Dạng Bunhiacopxki)

Dấu "=" xảy ra khi \(\Leftrightarrow x=y=z=1\)

19 tháng 11 2017

Cô si 3 số đó lại đi

19 tháng 11 2017

Hình bạn vẽ sai:

I đối xứng với A qua B đáng lẽ là = nhau

20 tháng 11 2017

Qua D nhá, đừng luyên thuyên

19 tháng 11 2017

file:///C:/Users/ADMIN/Pictures/Capture.PNG

19 tháng 11 2017

Bạn có thể giải chi tiết ra được ko?

19 tháng 11 2017

\(\frac{1}{2+\sqrt{3}}+\frac{1}{2-\sqrt{3}}\)

\(=\frac{2-\sqrt{3}+2+\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}\)

\(=\frac{4}{4-3}\)

\(=4\)

19 tháng 11 2017

\(\frac{1}{2+\sqrt{3}}+\frac{1}{2-\sqrt{3}}\)

\(=\frac{\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+\frac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)

\(=\frac{2-\sqrt{3}+2+\sqrt{3}}{4-3}\)

\(=4\)

19 tháng 11 2017

\(M=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)

\(=\frac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)

\(=\frac{\sqrt{a}-1}{\sqrt{a}}=\frac{\sqrt{a}}{\sqrt{a}}-\frac{1}{\sqrt{a}}=1-\frac{1}{\sqrt{a}}\)

19 tháng 11 2017

còn so sánh với 1 nữa, Bạn làm tiếp đi

19 tháng 11 2017

trình của mihf chỉ dừng ở lpws 8