K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2016

Bn "rãnh" nhỉ!!

2 tháng 12 2016

rảnh gì mà rảnh đến thế

1 tháng 12 2016

Ns vậy mà cx ns đc ak. Chính bn cx có giải ra đâu. chỉ bt ns người khác bn nên coi lại chính bản thân mk thì hơn

1 tháng 12 2016

coi cục cứt

9 tháng 4 2017

121 = 112   144=122           169=132          225 =152        324=182            361=192              400=202

Chúc bạn học tốt tích cho mink nhé

2 tháng 12 2016

Đặt cái ban đầu là A

Dầu tiên ta có

\(\text{(3a+c)(a+2b+c)+(3b+d)(b+2c+d)+(3c+a)(c+2d+a)+(3d+b)(d+2a+b)}\)

\(=4\left(a+b+c+d\right)^2\)

Ta có: \(\frac{a-b}{a+2b+c}+\frac{1}{2}=\frac{1}{2}.\frac{3a+c}{a+2b+c}=\frac{1}{2}.\frac{\left(3a+c\right)^2}{\left(3a+c\right)\left(a+2b+c\right)}\)

Tương tự ta có

\(\frac{b-c}{b+2c+d}+\frac{1}{2}=\frac{1}{2}.\frac{\left(3b+d\right)^2}{\left(3b+d\right)\left(b+2c+d\right)}\)

\(\frac{c-d}{c+2d+a}+\frac{1}{2}=\frac{1}{2}.\frac{\left(3c+a\right)^2}{\left(3c+a\right)\left(c+2d+a\right)}\)

\(\frac{d-a}{d+2a+b}+\frac{1}{2}=\frac{1}{2}.\frac{\left(3d+b\right)^2}{\left(3d+b\right)\left(d+2a+b\right)}\)

Cộng vế theo vế ta được

\(\frac{a-b}{a+2b+c}+\frac{1}{2}+\frac{b-c}{b+2c+d}+\frac{1}{2}+\frac{c-d}{c+2d+a}+\frac{1}{2}+\frac{d-a}{d+2a+b}+\frac{1}{2}=\frac{1}{2}.\frac{\left(3d+b\right)^2}{\left(3d+b\right)\left(d+2a+b\right)}+\frac{1}{2}.\frac{\left(3c+a\right)^2}{\left(3c+a\right)\left(c+2d+a\right)}+\frac{1}{2}.\frac{\left(3b+d\right)^2}{\left(3b+d\right)\left(b+2c+d\right)}+\frac{1}{2}.\frac{\left(3a+c\right)^2}{\left(3a+c\right)\left(a+2b+c\right)}\)

\(\ge\frac{1}{2}.\frac{\left(3a+c+3b+d+3c+a+3d+b\right)^2}{\left(3a+c\right)\left(a+2b+c\right)+\left(3b+d\right)\left(b+2c+d\right)+\left(3c+a\right)\left(c+2d+a\right)+\left(3d+b\right)\left(d+2a+b\right)}\)

\(=\frac{1}{2}.\frac{16\left(a+b+c+d\right)^2}{4\left(a+b+c+d\right)^2}=2\)

\(\Rightarrow A+2\ge2\)

\(\Leftrightarrow A\ge0\)

4 tháng 12 2016

=4(a+b+c+d)2

Ta có: a−ba+2b+c +12 =12 .3a+ca+2b+c =12 .(3a+c)2(3a+c)(a+2b+c) 

Tương tự ta có

b−cb+2c+d +12 =12 .(3b+d)2(3b+d)(b+2c+d) 

c−dc+2d+a +12 =12 .(3c+a)2(3c+a)(c+2d+a) 

d−ad+2a+b +12 =12 .(3d+b)2(3d+b)(d+2a+b) 

Cộng vế theo vế ta được

a−ba+2b+c +12 +b−cb+2c+d +12 +c−dc+2d+a +12 +d−ad+2a+b +12 =12 .(3d+b)2(3d+b)(d+2a+b) +12 .(3c+a)2(3c+a)(c+2d+a) +12 .(3b+d)2(3b+d)(b+2c+d) +12 .(3a+c)2(3a+c)(a+2b+c) 

≥12 .(3a+c+3b+d+3c+a+3d+b)2(3a+c)(a+2b+c)+(3b+d)(b+2c+d)+(3c+a)(c+2d+a)+(3d+b)(d+2a+b) 

=12 .16(a+b+c+d)24(a+b+c+d)2 =2

⇒A+2≥2

1 tháng 12 2016

Tử là mũ 2 thật hả bạn. Mũ 3 thì giải được còn mũ 2 thì vẫn chưa nghĩ ra

4 tháng 12 2016

1 phải  ko bn

28 tháng 11 2016

mk nghĩ giải theo cách này 

đặt \(x^2+y^2=a\) và \(\frac{x}{y}=b\) thì hpt trở thành 

\(\hept{\begin{cases}\frac{3}{a-1}+\frac{2}{b}=1\\a-2b=4\end{cases}}\)<=> \(\hept{\begin{cases}a=2b+4\\\frac{3}{2b-3}+\frac{2}{b}=1\end{cases}}\)<=> \(\hept{\begin{cases}2b^2-4b-6=0\\a=2b+4\end{cases}}< =>\hept{\begin{cases}\orbr{\begin{cases}b=3\\b=-1\end{cases}}\\a=2b+4\end{cases}}\)

đến đây cậu tự giải nốt nhé 

29 tháng 12 2016

Bạn có thể tibk mik ko?

28 tháng 11 2016

ok kết bạn nha k mình đi

28 tháng 11 2016

Với i = 1 thì

\(1+x_1\ge1+x_1\) (đúng)

Giả sử bất đẳng thức đúng đến i = k thì ta có

\(\left(1+x_1\right)\left(1+x_2\right)...\left(1+x_k\right)\ge1+x_1+x_2+...+x_k\)

Đặt \(1+x_1+x_2+...+x_k=y\)

\(\Rightarrow x_1+x_2+...+x_k=y-1\)

\(\Rightarrow y-1\)cùng dấu với xn

Ta chứng minh bất đẳng thức đúng với \(i=k+1\)

Ta có

\(\left(1+x_1\right)\left(1+x_2\right)...\left(1+x_k\right)\left(1+x_{k+1}\right)\ge\left(1+x_1+x_2+...+x_k\right)\left(1+x_{k+1}\right)\)

Ta chứng minh

\(\left(1+x_1+x_2+...+x_k\right)\left(1+x_{k+1}\right)\ge1+x_1+x_2+...+x_k+x_{k+1}\)

\(\Leftrightarrow y\left(1+x_{k+1}\right)\ge y+x_{k+1}\)

\(\Leftrightarrow x_{k+1}\left(y-1\right)\ge0\)

Bất đẳng thức này đúng vì \(x_{k+1};\left(y-1\right)\)là hai số cùng dấu

\(\Rightarrow\)Bất đẳng thức đúng với i = k + 1

Vậy bất đẳng thức ban đầu là đúng (phương pháp quy nạp nhé bạn)