[100 : ( 3^3 - 2)] - 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4A:
\(\left[\left(\dfrac{2}{193}-\dfrac{3}{386}\right).\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\left(\dfrac{7}{1931}+\dfrac{11}{3862}\right).\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
\(=\left(\dfrac{2}{193}.\dfrac{193}{17}-\dfrac{3}{386}.\dfrac{193}{17}+\dfrac{33}{34}\right):\left(\dfrac{7}{1931}.\dfrac{1931}{25}+\dfrac{11}{3862}.\dfrac{1931}{25}+\dfrac{9}{2}\right)\)
\(=\left(\dfrac{2}{17}-\dfrac{3}{34}+\dfrac{33}{34}\right):\left(\dfrac{7}{25}+\dfrac{11}{50}+\dfrac{9}{2}\right)\)
\(=\left(\dfrac{4}{34}+\dfrac{30}{34}\right):\left(\dfrac{14}{50}+\dfrac{11}{50}+\dfrac{9}{2}\right)\)
\(=\dfrac{34}{34}:\left(\dfrac{1}{2}+\dfrac{9}{2}\right)\)
\(=1:\dfrac{10}{2}=\dfrac{1}{5}\)
4B:
a, \(A=\dfrac{1,11+0,19-13.2}{2,06+0,54}-\left(\dfrac{1}{2}+\dfrac{1}{4}\right):2\)
\(=\dfrac{1,3-26}{2,6}-\dfrac{3}{4}:2\)
\(=\dfrac{-24,7}{2,6}-\dfrac{3}{8}=\dfrac{-19}{2}-\dfrac{3}{8}=-\dfrac{79}{8}\)
\(B=\left(5\dfrac{7}{8}-2\dfrac{1}{4}-0,5\right):2\dfrac{23}{26}\)
\(=\left(\dfrac{47}{8}-\dfrac{9}{4}-\dfrac{1}{2}\right):\dfrac{75}{26}\)
\(=\left(\dfrac{29}{8}-\dfrac{1}{2}\right).\dfrac{26}{75}\)
\(=\dfrac{25}{8}.\dfrac{26}{75}=\dfrac{13}{12}\)
b, Để \(A< x< B\) thì \(-\dfrac{79}{8}< x< \dfrac{13}{12}\)
\(\Rightarrow x\in\left\{-9;-8;-7;...;1\right\}\) (vì \(x\in\mathbb{Z}\))
$Toru$
\(\text{Sửa đề }:x^4-3x+2=(x-1)(x^3+ax^2+bx-2)\\\Leftrightarrow x^4-x^3+x^3-x^2+x^2-x-2x+2=(x-1)(x^3+ax^2+bx-2)\\\Leftrightarrow x^3(x-1)+x^2(x-1)+x(x-1)-2(x-1)=(x-1)(x^3+ax^2+bx-2)\\\Leftrightarrow (x-1)(x^3+x^2+x-2)=(x-1)(x^3+ax^2+bx-2)\\\Rightarrow a=b=1\)
a) Số kẹo đựng trên đĩa là :
\(2\times5=10\) ( cái kẹo )
Gọi kẹo của Mai có số kẹo là :
\(10+20=30\) ( cái kẹo )
b) Mai cần thêm số đĩa để đựng kẹo là :
\(20:5=4\) ( đĩa )
Mai cần tất cả số đĩa để đựng hết kẹo là :
\(2+4=6\) ( đĩa )
Đáp số :
a) \(30\) cái kẹo
b) \(6\) đĩa
a) Để \(\dfrac{2}{x-2}\) là số hữu tỉ dương thì:
\(\left\{{}\begin{matrix}\dfrac{2}{x-2}\in\mathbb{Q}\\\dfrac{2}{x-2}>0\\x-2\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\in\mathbb{Q}\\x-2>0\left(\text{vì }2>0\right)\\x\ne2\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\in\mathbb{Q}\\x>2\end{matrix}\right.\)
b) Để \(\dfrac{-3}{x+5}\) là số hữu tỉ dương thì:
\(\left\{{}\begin{matrix}\dfrac{-3}{x+5}\in\mathbb{Q}\\\dfrac{-3}{x+5}>0\\x+5\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\in\mathbb{Q}\\x+5< 0\left(\text{vì }-3< 0\right)\\x\ne-5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\in\mathbb{Q}\\x< -5\end{matrix}\right.\)
c) Để \(\dfrac{12}{2x+4}\) là số hữu tỉ dương thì:
\(\left\{{}\begin{matrix}\dfrac{12}{2x+4}\in\mathbb{Q}\\\dfrac{12}{2x+4}>0\\2x+4\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\in\mathbb{Q}\\2x+4>0\left(\text{vì }12>0\right)\\x\ne-2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\in\mathbb{Q}\\x>-2\end{matrix}\right.\)
Số bé nhất có \(3\) chữ số chia hết cho \(3\) là : \(102\)
Dễ thấy \(102\) không chia hết cho \(9\) nên số cần tìm là \(102\)
1: \(\dfrac{3}{4}:\dfrac{1}{2}+x=\dfrac{2}{3}\)
=>\(x+\dfrac{3}{4}\cdot2=\dfrac{2}{3}\)
=>\(x+\dfrac{3}{2}=\dfrac{2}{3}\)
=>\(x=\dfrac{2}{3}-\dfrac{3}{2}=\dfrac{4}{6}-\dfrac{9}{6}=-\dfrac{5}{6}\)
2: \(\dfrac{7}{4}+\dfrac{1}{4}:x=2\)
=>\(\dfrac{1}{4}:x=2-\dfrac{7}{4}=\dfrac{1}{4}\)
=>\(x=\dfrac{1}{4}:\dfrac{1}{4}=1\)
3: \(\dfrac{48}{64}:\dfrac{12}{16}+0,25=\dfrac{3}{4}:\dfrac{3}{4}+0,25=1+0,25=1,25\)
4: \(\dfrac{3}{4}\cdot\dfrac{6}{9}+\dfrac{7}{12}\cdot6=\dfrac{18}{36}+\dfrac{7}{2}=\dfrac{1}{2}+\dfrac{7}{2}=\dfrac{8}{2}=4\)
5: \(5\cdot\dfrac{x}{6}-\dfrac{1}{4}=\dfrac{7}{2}\)
=>\(\dfrac{5}{6}x=\dfrac{7}{2}+\dfrac{1}{4}=\dfrac{15}{4}\)
=>\(x=\dfrac{15}{4}:\dfrac{5}{6}=\dfrac{15}{4}\cdot\dfrac{6}{5}=\dfrac{3}{2}\cdot3=\dfrac{9}{2}\)
6: \(\dfrac{3}{x+1}-\dfrac{1}{4}=\dfrac{7}{4}\)(ĐKXĐ: x<>-1)
=>\(\dfrac{3}{x+1}=\dfrac{7}{4}+\dfrac{1}{4}=\dfrac{8}{4}=2\)
=>\(x+1=\dfrac{3}{2}\)
=>\(x=\dfrac{1}{2}\left(nhận\right)\)
\(P=\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{103\cdot105}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{103}-\dfrac{1}{105}\)
\(=\dfrac{1}{3}-\dfrac{1}{105}=\dfrac{34}{105}\)
\(P=\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}+...+\dfrac{2}{103\times105}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{103}-\dfrac{1}{105}\)
\(=\dfrac{1}{3}-\dfrac{1}{105}=\dfrac{34}{105}\)
Công thức: \(\dfrac{a}{n\left(n+a\right)}=\dfrac{1}{n}-\dfrac{1}{n+a}\)
\(\left[100:\left(3^3-2\right)\right]-4\)
\(=\left[100:\left(27-2\right)\right]-4\)
\(=\left(100:25\right)-4\)
\(=4-4\)
\(=0\)
\(\left[100:\left(3^3-2\right)\right]-4\)
\(=\left[100:\left(27-2\right)\right]-4\)
\(=\left[100:25\right]-4\)
\(=4-4\)
\(=0\)