K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6

Vì 2 số lẻ liên tiếp cách nhau 2 đơn vị mà số lẻ lớn nhất từ trong dãy số từ 1 đến 30 là 29 và số lẻ bé nhất trong dãy số từ 1 đến 30 là 1
⇒ Từ 1 đến 30 có số số lẻ là:

     ( 29 - 1 ) : 2 + 1 = 15 ( số lẻ )

Vì 2 số chẵn liên tiếp cách nhau 2 đơn vị mà số chẵn lớn nhất trong dãy số từ 1 đến 30 là 30 và số chẵn bé nhất trong dãy số từ 1 đến 30 là 2

⇒ Từ 1 đến 30 có số số chẵn là:

     ( 30 - 2 ) : 2 + 1 = 15 ( số chẵn )

             Đáp số : 15 số lẻ

                           15 số chẵn

22 tháng 6

15 số lẻ 15 số chẵn

\(sin^210^0+sin^220^0+sin^245^0+sin^270^0+sin^280^0\)

\(=\left(sin^210^0+sin^280^0\right)+\left(sin^220^0+sin^270^0\right)+\left(sin^245^0\right)\)

\(=\left(sin^210^0+cos^210^0\right)+\left(sin^220^0+cos^220^0\right)+\left(\dfrac{1}{2}\right)\)

\(=1+1+\dfrac{1}{2}=\dfrac{5}{2}\)

22 tháng 6

\(x^3+5x^2+8x+4\)

\(=x^3+x^2+4x^2+4x+4x+4\)

\(=x^2\left(x+1\right)+4x\left(x+1\right)+4\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+4x+4\right)\)

\(=\left(x+1\right)\left(x+2\right)^2\)

22 tháng 6

b)Ta có: \(x-y=7\Rightarrow x=y+7\)

\(\dfrac{2x+7}{3x-y}=\dfrac{2\left(y+7\right)+7}{3\left(y+7\right)-y}=\dfrac{2y+21}{2y+21}=1\)

\(\dfrac{2y-7}{3y-x}=\dfrac{2y-7}{3y-\left(y+7\right)}=\dfrac{2y-7}{2y-7}=1\)

\(\Rightarrow C=\dfrac{2x+7}{3x-y}+\dfrac{3y-7}{3y-x}=1+1=2\)

22 tháng 6

Sửa lại đề bài là cm \(\dfrac{1}{DI^2}+\dfrac{1}{DK^2}=\dfrac{1}{a^2}\) nhé.

Qua D kẻ đường thẳng vuông góc với DE cắt BC tại F.

Khi đó \(\widehat{DAI}=\widehat{CDF}\) (vì cùng phụ với \(\widehat{IDC}\))

Tứ giác ABCD là hình vuông nên \(DA=DC\)

Xét tam giác ADI và CDF, ta có:

\(\widehat{DAI}=\widehat{DCF}=90^o;DA=DC;\widehat{ADI}=\widehat{CDF}\)

\(\Rightarrow\Delta ADI=\Delta CDF\left(g.c.g\right)\)

\(\Rightarrow DI=DF\)

Tam giác DKF vuông tại D có đường cao DC \(\left(C\in KF\right)\) nên:

\(\dfrac{1}{DF^2}+\dfrac{1}{DK^2}=\dfrac{1}{DC^2}\) (hệ thức lượng trong tam giác vuông)

\(\Rightarrow\dfrac{1}{DI^2}+\dfrac{1}{DK^2}=\dfrac{1}{a^2}\) (do \(DI=DF,DC=a\))

Ta có đpcm.

22 tháng 6

\(A=sin^210+sin^220+sin^245+sin^270+sin^280\)

\(A=sin^210+sin^220+sin^245+cos^220+cos^210\)

\(A=\left(sin^210+cos^210\right)+\left(sin^220+cos^220\right)+sin^245\)

\(A=1+1+\left(\dfrac{\sqrt{2}}{2}\right)^2\)

\(A=\dfrac{5}{2}\)

21 tháng 6

Chiều dài hơn chiều rộng là :

\(18-2=16\left(m\right)\)

Nửa chu vi miếng đất hình chữ nhật đó là :

\(64:2=32\left(m\right)\)

Chiều dài miếng đất đó là :

\(\left(32+16\right):2=24\left(m\right)\)

Chiều rộng miếng đất đó là :

\(24-16=8\left(m\right)\)

Diện tích miếng đất đó là :

\(24\times8=192\left(m^2\right)\)

Đáp số : \(192m^2\)

21 tháng 6

$17+x-(352-400)=-32$

$\Rightarrow x-(-48)=-32-17$

$\Rightarrow x+48=-49$

$\Rightarrow  x=-49-48$

$\Rightarrow x=-97$

21 tháng 6

có nhé

4
456
CTVHS
21 tháng 6

Tùy vào các loại bạn sử dụng nhé

21 tháng 6

6B.

a) Số tiền người sử dụng phải trả nếu đăng kí gói Internet 6 tháng là:

\(C\left(6\right)=70.6+300=720\) (nghìn đồng)

b) Nếu người sử dụng phải thanh toán số tiền cước phí sử dụng Internet là 930 nghìn đồng thì:

\(C\left(x\right)=930\)

\(\Rightarrow70x+300=930\)

\(\Leftrightarrow70x=630\)

\(\Leftrightarrow x=9\)

Vậy thời hạn sử dụng gói cước Internet của người đó là 9 tháng.

21 tháng 6

6A.

a) Giá tiền của một chiếc ấm đun nước có bán kính đáy ấm 28cm là:

\(\dfrac{11}{8}.28+150=188,5\) (nghìn đồng)

b) Giá tiền của cô Trinh phải trả là:

\(\left(\dfrac{11}{8}.24+150\right)+\left(\dfrac{11}{8}.32+150\right)=377\) (nghìn đồng)

Vì \(400>377\) nên cô Trinh đã mang đủ tiền để trả.

5B.

Gọi số thùng bánh tổ I, tổ II sản xuất được trong tuần thứ nhất lần lượt là \(x,y\) (thùng bánh; \(x,y\in\mathbb{N}^*;x,y<900\))

Vì trong tuần thứ nhất cả hai tổ sản xuất được 900 thùng bánh nên ta có phương trình: \(x+y=900\) (1)

Số thùng bánh tổ I sản xuất được trong tuần thứ hai là: \(x\left(100\%+25\%\right)=1,25x\) (thùng bánh)

Số thùng bánh tổ II sản xuất được trong tuần thứ hai là: \(95\%y=0,95y\)

Vì sang tuần thứ hai cả hai tổ sản xuất được 975 thùng bánh nên ta có phương trình: \(1,25x+0,95y=975\) (2)

Từ (1) và (2) ta có hệ: \(\left\{{}\begin{matrix}x+y=900\\1,25x+0,95y=975\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=400\left(tm\right)\\y=500\left(tm\right)\end{matrix}\right.\)

Vậy: ...