cho \(x>0,y>0,t>0\)
Chứng minh rằng: Nếu \(\frac{\sqrt{xy}+1}{\sqrt{y}}=\frac{\sqrt{yt}+1}{\sqrt{t}}=\frac{\sqrt{xt}+1}{\sqrt{x}}\)\(\left(1\right)\)
Thì: \(x=y=t\)hoặc \(x.y.t=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Xét (O) có
CM,CA là tiếp tuyến
nên OC là phân giác của góc MOA(1) và CM=CA
Xet (O) có
DM,DB là tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
Từ (1), (2) suy ra góc COD=1/2*180=90 độ
b:
Xét ΔCOD vuông tại O có OM là đường cao
nên MC*MD=OM^2
c: \(AC=\sqrt{\left(2R\right)^2-R^2}=R\sqrt{3}\)
Trong một đường tròn, số đo của góc nội tiếp bằng nửa số đo của cung bị chắn.
Hệ quảTrong một đường tròn:
Ta có: \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{b+a}\ge\frac{a+b+c}{2}\)
Áp dụng bất đẳng thức AM-GM cho vế VT và VP:
\(VT=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge3\sqrt[3]{\frac{a^2b^2c^2}{8abc}}=3\sqrt[3]{\frac{abc}{8}}\) (1)
\(VP=\frac{a+b+c}{2}\Leftrightarrow\frac{a}{2}+\frac{b}{2}+\frac{c}{2}\ge3\sqrt[3]{\frac{abc}{8}}\) (2)
Từ (1) và (2) suy ra ĐPCM
\(\left(1\right)\Rightarrow\hept{\begin{cases}\sqrt{x}-\sqrt{y}=\frac{1}{\sqrt{z}}-\frac{1}{\sqrt{y}}=\frac{\sqrt{y}-\sqrt{z}}{\sqrt{xy}}\\\sqrt{y}-\sqrt{z}=\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{z}}=\frac{\sqrt{z}-\sqrt{x}}{\sqrt{xz}}\\\sqrt{z}-\sqrt{x}=\frac{1}{\sqrt{y}}-\frac{1}{\sqrt{x}}=\frac{\sqrt{x}-\sqrt{y}}{\sqrt{xy}}\end{cases}\left(2\right)}\)
\(\left(2\right)\Rightarrow\left(\sqrt{x}-\sqrt{y}\right).\left(\sqrt{y}-\sqrt{z}\right).\left(\sqrt{z}-\sqrt{x}\right)=\frac{\left(\sqrt{y}-\sqrt{z}\right).\left(\sqrt{z}-\sqrt{x}\right).\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{zyzxxy}}\left(3\right)\)\(Từ\left(3\right)\)Ta sẽ chứng minh được rằng \(\orbr{\begin{cases}x=y=z\\x.y.z=1\end{cases}}\)