rút gọn rồi tính giá trị của mỗi biểu thức sau
a, A=(7x+5)^2+(3x-5)^2-(10-6x)(5+7x) tại x=-2
b, B=(2x+y)(y^2+4y^2-2xy)-8x(x-1)(x+1) tại x=-2, y=3
giúp mình nhoa !!!!!
Mình cần trong tối nay
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(a,b,c\ne\pm1\) và \(\frac{ab+1}{b}=\frac{bc+1}{c}=\frac{ca+1}{a}\) Chứng minh rằng : \(a=b=c\)
Ta có: \(\frac{ab+1}{b}=\frac{bc+1}{c}=\frac{ac+1}{a}\Leftrightarrow a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\)
\(\Leftrightarrow\hept{\begin{cases}a-b=\frac{1}{c}-\frac{1}{b}\\b-c=\frac{1}{a}-\frac{1}{c}\\c-a=\frac{1}{b}-\frac{1}{a}\end{cases}}\Leftrightarrow\hept{\begin{cases}a-b=\frac{b-c}{bc}\left(1\right)\\b-c=\frac{c-a}{ac}\left(2\right)\\c-a=\frac{a-b}{ab}\left(3\right)\end{cases}}\)
Nhân (1), (2), (3) vế theo vế, ta được:
\(\left(a-b\right)\left(b-a\right)\left(c-a\right)=\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{a^2.b^2.c^2}\)
\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(1-\frac{1}{a^2.b^2.c^2}\right)=0\)
Do đó: \(\left(a-b\right)\left(b-c\right)\left(c-a\right)=0\)
\(\Rightarrow a=b\) hoặc \(b=c\) hoặc \(c=a\)
Với a = b thay vào (1) ta được: b = c => a = b = c.
Với b = c thay vào (2) ta được: c = a => a = b = c.
Với c = a thay vào (1) ta được: a = b => a = b = c.
\(\Rightarrow a=b=c\left(đpcm\right)\)
Đây là việc olm tặng tui đâu ngủ mua cho mất tiền??
\(A=x^2+2y^2-2xy+4x-2y+2017\)
\(A=x^2+y^2+y^2-2xy+4x-4y+2y+2017\)
\(A=\left(x^2-2xy+y^2\right)+4\left(x-y\right)+4+\left(y^2+2y+1\right)+2012\)
\(A=\left(x-y\right)^2+2\left(x-y\right)2+2^2+\left(y+1\right)^2+2012\)
\(A=\left(x-y+2\right)^2+\left(y+1\right)^2+2012\)
Vì \(\left(x-y+2\right)^2\ge0\forall x;y,\left(y+1\right)^2\ge0\forall y\)
\(\Rightarrow A\ge2012\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y+2=0\\y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=-1\end{cases}}}\)
Vậy Amin = 2012 khi và chỉ khi x = -3; y = -1
a) x^2.(x^2+4) - x^2 + 4
= x^4 + 4.x^2 - x^2 + 4
= x^4 + 3.x^2 + 4
= x^4 + 4.x^2 + 4 - x^2
= (x^2+2)^2 - x^2
= (x^2+2+x).(x^2+2-x)
b) x^2.(x+4)^2 - (x+4)^2 - (x^2-1)
= (x+4)^2.(x^2-1) - (x^2-1)
= (x^2-1).[(x+4)^2- 1]
= (x+1).(x-1).(x+3).(x+5)
\(a,x^2\left(x^2+4\right)-x^2+4\)
\(=x^2\left(x^2+4\right)-\left(x^2+4\right)\)
\(=\left(x^2-1\right)\left(x^2+4\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+4\right)\)
\(b,x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x+4\right)^2-\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left[\left(x+4\right)^2-1\right]\)
\(=\left(x-1\right)\left(x+1\right)\left(x+4-1\right)\left(x+4+1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+5\right)\)
a; A = (7\(x\) + 5)2 + (3\(x-5\))2 - (10 - 6\(x\)).(5 + 7\(x\))
A = 49\(x^2\) + 70\(x\) + 25 + 9\(x^2\) - 30\(x\) + 25 - 50 - 70\(x\) + 30\(x\) + 42\(x^2\)
A = (49\(x^2\) + 9\(x^2\) + 42\(x^2\)) + (70\(x-70x\)) - (30\(x\) - 30\(x\)) + (25+25-50)
A = 100\(x^2\) + 0 + 0 + (50 - 50)
A = 100\(x^2\) + 0 + 0 + 0
A = 100\(x^2\)
Thay \(x=-2\) vào A = 100\(x^2\) ta có:
A = 100.(-2)2
A = 100.4
A = 400.