tìm x: 30 /- x bằng âm -6/5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{-12}{18}\) - \(\dfrac{-21}{35}\)
= \(\dfrac{-2}{3}\) + \(\dfrac{3}{5}\)
= \(\dfrac{-10}{15}\) + \(\dfrac{9}{15}\)
= \(-\dfrac{1}{15}\)
S = \(\dfrac{1}{1.3}\)+\(\dfrac{1}{2.4}\)+...+\(\dfrac{1}{97.99}\)+\(\dfrac{1}{98.100}\) - \(\dfrac{49}{99}\)
S = (\(\dfrac{1}{1.3}\)+\(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+...+\(\dfrac{1}{97.99}\))+(\(\dfrac{1}{2.4}\)+\(\dfrac{1}{4.6}\)+\(\dfrac{1}{6.8}\)+...+\(\dfrac{1}{98.100}\))- \(\dfrac{49}{99}\)
S = \(\dfrac{1}{2}\).(\(\dfrac{2}{1.3}\)+\(\dfrac{2}{3.5}\)+...+\(\dfrac{2}{97.99}\))+\(\dfrac{1}{2}\)(\(\dfrac{2}{2.4}\)+\(\dfrac{2}{4.6}\)+\(\dfrac{2}{6.8}\)+...+\(\dfrac{2}{98.100}\))-\(\dfrac{49}{99}\)
S =\(\dfrac{1}{2}\).(\(\dfrac{1}{1}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{5}\)+...+\(\dfrac{1}{97}\)-\(\dfrac{1}{99}\))+\(\dfrac{1}{2}\).(\(\dfrac{1}{2}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{6}\)+\(\dfrac{1}{6}\)-\(\dfrac{1}{8}\)+...+\(\dfrac{1}{98}\)-\(\dfrac{1}{100}\))-\(\dfrac{49}{99}\)
S = \(\dfrac{1}{2}\).(\(\dfrac{1}{1}\)-\(\dfrac{1}{99}\))+\(\dfrac{1}{2}\).(\(\dfrac{1}{2}\)-\(\dfrac{1}{100}\)) - \(\dfrac{49}{99}\)
S = \(\dfrac{1}{2}\).\(\dfrac{98}{99}\) + \(\dfrac{1}{2}\).\(\dfrac{49}{100}\) - \(\dfrac{49}{99}\)
S = \(\dfrac{49}{99}\) + \(\dfrac{49}{200}\) - \(\dfrac{49}{99}\)
S = (\(\dfrac{49}{99}\)- \(\dfrac{49}{99}\)) + \(\dfrac{99}{200}\)
S = 0 + \(\dfrac{49}{200}\)
S = \(\dfrac{49}{200}\)
Bài \(13\):
\(C=\dfrac{3}{\left(1\cdot2\right)^2}+\dfrac{5}{\left(2\cdot3\right)^2}+\dfrac{7}{\left(3\cdot4\right)^2}+...+\dfrac{2n+1}{\left[n\left(n+1\right)\right]^2}\)
\(=\dfrac{3}{1\cdot4}+\dfrac{5}{4\cdot9}+\dfrac{7}{9\cdot16}+...+\dfrac{n^2+2n+1-n^2}{n^2\left(n+1\right)^2}\)
\(=\dfrac{4-1}{1\cdot4}+\dfrac{9-4}{4\cdot9}+\dfrac{16-9}{9\cdot16}+...+\dfrac{\left(n+1\right)^2-n^2}{n^2\left(n+1\right)^2}\)
\(=\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+...+\dfrac{1}{n^2}-\dfrac{1}{\left(n+1\right)^2}\)
\(=1-\dfrac{1}{\left(n+1\right)^2}=\dfrac{n\left(n+2\right)}{\left(n+1\right)^2}\)
Bài \(10\):
\(B=\dfrac{5}{2\cdot1}+\dfrac{4}{1\cdot11}+\dfrac{3}{11\cdot2}+\dfrac{1}{2\cdot15}+\dfrac{13}{15\cdot4}\)
\(=7\left(\dfrac{5}{2\cdot7}+\dfrac{4}{7\cdot11}+\dfrac{3}{11\cdot14}+\dfrac{1}{14\cdot15}+\dfrac{13}{15\cdot28}\right)\)
\(=7\left(\dfrac{1}{2}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{28}\right)\)
\(=7\left(\dfrac{1}{2}-\dfrac{1}{28}\right)=7\cdot\dfrac{13}{28}=\dfrac{13}{4}\)
-57.(75 - 36) - 75.(36 - 57)
= -57.75 + 57.36 - 75.36 + 75.57
= (-57.75 + 75.57) +36.(57 - 75)
= 0 + 36.(-18)
= -648
1) \(\dfrac{6}{7}\cdot\dfrac{8}{13}+\dfrac{6}{13}\cdot\dfrac{9}{7}-\dfrac{3}{13}\cdot\dfrac{6}{7}\)
\(=\dfrac{6}{7}\cdot\dfrac{8}{13}+\dfrac{9}{13}\cdot\dfrac{6}{7}-\dfrac{3}{13}\cdot\dfrac{6}{7}\)
\(=\dfrac{6}{7}\cdot\left(\dfrac{8}{13}+\dfrac{9}{13}-\dfrac{3}{13}\right)\)
\(=\dfrac{6}{7}\cdot\dfrac{14}{13}\)
\(=\dfrac{12}{13}\)
2) \(\dfrac{3}{11}\cdot\dfrac{7}{9}+\dfrac{17}{11}\cdot\dfrac{3}{19}-\dfrac{3}{19}\cdot\dfrac{25}{11}\)
\(=\dfrac{7}{33}+\dfrac{3}{19}\cdot\left(\dfrac{17}{11}-\dfrac{25}{11}\right)\)
\(=\dfrac{7}{33}+\dfrac{3}{19}\cdot\dfrac{-8}{11}\)
\(=\dfrac{7}{33}+\dfrac{-24}{209}\)
\(=\dfrac{61}{627}\)
3) \(\dfrac{5}{7}\cdot\dfrac{-2}{11}+\dfrac{5}{7}\cdot\dfrac{9}{11}-\dfrac{5}{7}\)
\(=\dfrac{5}{7}\cdot\left(\dfrac{-2}{11}+\dfrac{9}{11}-1\right)\)
\(=\dfrac{5}{7}\cdot-\dfrac{4}{11}\)
\(=\dfrac{-20}{77}\)
4) \(\dfrac{3}{13}\cdot\dfrac{15}{11}+\dfrac{3}{11}\cdot\dfrac{7}{13}-\dfrac{3}{13}\)
\(=\dfrac{3}{13}\cdot\dfrac{15}{11}+\dfrac{7}{11}\cdot\dfrac{3}{13}-\dfrac{3}{13}\)
\(=\dfrac{3}{13}\cdot\left(\dfrac{15}{11}+\dfrac{7}{11}-1\right)\)
\(=\dfrac{3}{13}\cdot\left(\dfrac{22}{11}-1\right)\)
\(=\dfrac{3}{13}\cdot1\)
\(=\dfrac{3}{13}\)
Lời giải:
Ta có:
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2021^2}+\frac{1}{2022^2}<\underbrace{ \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2021.2022}}_{M}\)
\(M=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{2022-2021}{2021.2022}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2021}-\frac{1}{2022}=1-\frac{1}{2022}<1\)
\(\Rightarrow \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2021^2}+\frac{1}{2022^2}< M< 1\)
Ta có đpcm.
Lời giải:
\(A=\frac{10^{2021}+1}{10^{2020}+1}=\frac{10(10^{2020}+1)-9}{10^{2020}+1}=10-\frac{9}{10^{2020}+1}<10-\frac{9}{10^{2021}+1}=\frac{10^{2022}+1}{10^{2021}+1}=B\)
Vậy $A<B$
\(\dfrac{30}{-x}=-\dfrac{6}{5}\)
\(\dfrac{30}{-x}=\dfrac{-6\cdot5}{5\cdot5}\)
\(\dfrac{30}{-x}=\dfrac{-30}{25}\)
\(\Rightarrow\dfrac{30}{-x}=\dfrac{30}{-25}\)
\(\Rightarrow x=25\)
30/(-x) = -6/5
-x.(-6) = 30.5
6x = 150
x = 150 : 6
x = 25