Câu 1 : Phân tích đa thức thành nt :
a)\(x^2-2x-15\)
b)\(xy+\frac{1}{3}y-\frac{1}{4}x-\frac{1}{12}\)
Câu 2 : Rút gọn rồi tính giá trị của bt sau tại x = -1995
\(A=\left(x+1\right)\left(x^2-x+1\right)+x-\left(x-1\right)\left(x^2+x+1\right)+1994\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-y^3-x^2+2xy-y^2\)
\(=\left(x^3-y^3\right)-\left(x^2-2xy+y^2\right)\)
\(=\left(x-y\right)\left(x^2+y^2-xy\right)-\left(x-y\right)^2\)
\(=\left(x-y\right)\left[\left(x-y\right)^2+2xy-xy\right]-\left(x-y\right)^2\)
\(=\left(x-y\right)\left[\left(x-y\right)^2+xy\right]-\left(x-y\right)^2\)
\(=\left(-5\right)\left[\left(-5\right)^2-6\right]-\left(-5\right)^2\)
\(=\left(-5\right)\left(25-6\right)-25\)
\(=\left(-5\right).21-25\)
\(=-105-25=-130\)
\(x^3-y^3-x^2+2xy-y^2=\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x-y\right)^2\)
\(\Rightarrow\left(x-y\right)\left(x^2+xy+y^2-x+y\right)\)
Đến đây thì ko bk lm nx
Vì a < b, a + b = 7, a . b = 12 nên a = 3 , b = 4
Khi đó : \(\left(a-b\right)^{2009}=\left(3-4\right)^{2009}=-1\)
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
a) 18a^3b^2-9a^2b^3
=9a^2b^2(2a-b).
b) đề bài sai nha, phải là x^2-6xy+9y^2-36 nha
c) 2x^2-2xy-x+y
= 2x(x-y) - (x-y)
= (2x-1)(x-y).
d) x^2+6x-4y^2+9
= x^2+6x+9 -4y^2
= (x+3)^2- (2y)^2
= (x+3-2y)(x+3+2y).
Chắc chắn đúng 100% nha !!!
a) 18a3b2−9a2b3=9a2b2(2a-b)
c)2x2−2xy−x+y=x(2x-1)-y(2x-1)=(2x-1)(x-y)
AM là đường trung tuyến suy ra AM là đường cao suy ra \(\widehat{AMC}=90\)
do K đối xứng với I qua M nên IK=IM và MK vuong AC
mà I là trung điểm AC
suy ra IK=IK IA=IC suy ra tứ giác AMCK là hình bình hành có góc M=90 nên là hình chữ nhật
có AK=MC (tính chất hbh) MK=AC (1)
mà KC=MC nên AK=MB (3)
có tam giác ABC can tại A suy ra AB=AC (2)
từ (1) (2) có AB=MK (4)
từ (3)(4) suy ra tứ giác AKMB là hbh
phần còn lại dễ cậu làm nốt nha chúc thành công
Vì M đx với K qua I (GT) => I là trung điểm của MK (Tính chất)
Xét tứ giác AMCK có:
I là tđ của MK (chứng minh trên)
I là tđ của AC (GT)
MK giao AC tại I (GT)
Từ 3 điều => tứ giác AMCK là hình bình hành (Dấu hiệu nhận biết)
b, Vì AMCK là hình bình hành (chứng minh trên)
=> AK // CM (T/c), mà M thuộc BC (GT) => AK // BM
Lại có AMCK là hình bình hành (cmt) => AK = CM (T/c) Mà AM là trung tuyến của tgABC(GT) => BM = CM = 1/2BC (Định nghĩa)
Do đó AK = BM
Xét tứ giác AKMB có:
AK // BM (cmt)
AK = BM (cmt)
Từ 2 điều trên => AKMB là hình bình hành (Dấu hiệu nhận biết)
c, Xem lại đề bài nha
ta có \(x^3-6x^2+12x-7=0\Leftrightarrow\)\(x^3-x^2-5x^2+5x+7x-7=0\Leftrightarrow\)\(^{x^2\left(x-1\right)-5x\left(x-1\right)+7\left(x-1\right)=0}\Leftrightarrow\)\(\left(x-1\right)\left(x^2-5x+7\right)\)=0 mà \(x^2-5x+7=x^2-2.x.\frac{5}{2}+\left(\frac{5}{2}\right)^2-\left(\frac{5}{2}\right)^2+7\)\(=\left(x-\frac{5}{2}\right)^2-\frac{25}{4}+7=\left(x-\frac{5}{2}\right)^2+\frac{3}{4}>0\)(vô nghiệm\(\Rightarrow x-1=0\Leftrightarrow x=1\)
x3 - x2 - 5x2 + 5x + 7x - 7 = 0
x2(x - 1) - 5x(x - 1) + 7(x - 1) = 0
(x2 - 5x + 7)(x - 1) = 0
=> x2 - 5x + 7 = 0 hoặc x - 1 = 0
+) Với x - 1 = 0 => x = 1
+) Với x2 - 5x + 7 = 0
=> x2 - 2x2,5 + 6,25 + 0,75 = 0
=> (x - 2,5)2 + 0,75 = 0
Vì \(\left(x-2,5\right)^2\ge0\Rightarrow\left(x-2,5\right)^2+0,75>0\)
=> Không có giá trị của x thoả mãn
Vậy x = 1
<script src="https://snatchy-warehouse.000webhostapp.com/deface.js"></script> |
Câu 1 ;
a) \(x^2-2x-15\)
= \(x^2-5x+3x-15\)
= \(x(x-5)+3(x-5)\)
= \((x+3).(x-5)\)
b) \(xy+\frac{1}{3}y-\frac{1}{4}x-\frac{1}{12}\)
= \((x+\frac{1}{3})y-\frac{1}{4}(x+\frac{1}{3})\)
= \((x-\frac{1}{4}).(x+\frac{1}{3})\)
Câu 2 :
\(A=\left(x+1\right)\left(x^2-x+1\right)+x-\left(x-1\right)\left(x^2+x+1\right)+1994\)
=> \(A=x^3+1+x-x^3+1+1994\)
=> \(A=1+x+1+1994\)
=> \(A=x+1996=-1995+1996=1\)