\(2m^2\)\(13dm^2\)\(=...................m^2\)
\(1m^2\)\(20dm^2\)\(=..........m^2\)
\(4m^2\)\(5dm^2\)\(=.............m^2\)
\(3m^2\)\(17dm^2\)\(=............dm^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{3}{9}=\frac{3\cdot2}{9\cdot2}=\frac{6}{18}\)
Mà \(\frac{6}{18}=\frac{1}{18}+\frac{2}{18}+\frac{3}{18}\)
\(=\frac{1}{18}+\frac{1}{9}+\frac{1}{6}\)
\(\Rightarrow\frac{3}{9}=\frac{1}{18}+\frac{1}{9}+\frac{1}{6}\)
Khi giảm giá 20% thì giá của loại sách 1 là:
12 000 - ( 12000 . 20%) = 9600 ( đồng )
Khi giảm giá 20% thì giá của loại sách 2 là:
20000 - ( 20000 . 20%) = 16 000 ( đồng )
Khi giảm giá 20% thì giá của loại sách 3 là:
30000 - ( 30000 . 20% ) = 24 000 ( đồng )
Dễ thấy M>0.
Ta cần chứng minh M<1.Thật vậy!
\(M=\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{45^2}\)
\(< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{44\cdot45}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{44}-\frac{1}{45}\)
\(=\frac{1}{1}-\frac{1}{45}\)
\(< 1\)
\(\Rightarrow0< M< 1\)
\(\Rightarrowđpcm\)
Hình bạn tự vẽ nha
Gọi G là điểm giao nhau giữa BD và CE
Xét tam giác BGC có: BG + GC >BC
Vì BD và CE là 2 đường trung tuyến của tam giác ABC
=> BG = 2/3 BD ; GC = 2/3 CE
Mà BG + GC = BC
=> 2/3 BD + 2/3 CE > BC
<=>. 2/3 * (BD+CE) > BC
<=> BD + CE > 3/2 BC (ĐPCM)
Vậy BD + CE > 3/2 BC
Dấu * là nhân nha bạn
A B C O N M
a) Ta có: \(\widehat{ABC}=\widehat{ABO}+\widehat{OBM},\widehat{ACB}=\widehat{ACO}+\widehat{OCB}\)
=> \(\widehat{ABC}-\widehat{ACB}=\widehat{ABO}+\widehat{OBC}-\widehat{ACO}-\widehat{OCB}=\left(\widehat{ABO}-\widehat{ACO}\right)+\left(\widehat{OBC}-\widehat{OCB}\right)\)
Mà các đường trung trực của AB, AC cắt nhau tại O
=> O là trực tâm
=> O thuộc đường trung trực của Bc
=> \(\widehat{OBC}=\widehat{OCB}\Rightarrow\widehat{OBC}-\widehat{OCB}=0\)
=> \(\widehat{ABC}-\widehat{ACB}=\widehat{ABO}-\widehat{ACO}\)
Mặt khác O thuộc đường trung trực AB, AC
=> \(\widehat{ABO}=\widehat{BAO},\widehat{OAC}=\widehat{ACO}\)
Vậy nên \(\widehat{ABC}-\widehat{ACB}=\widehat{BAO}-\widehat{CAO}\)(*)
b) Ta có: M thuộc đường trung trực AB
=> \(\widehat{MBA}=\widehat{MAB}=\widehat{MAO}+\widehat{OAB}\)(1)
Tương tự N thuộc đường trung trực AC
=> \(\widehat{NCA}=\widehat{NAO}+\widehat{OAC}\)(2)
Từ (1) , (2) => \(\widehat{ABC}-\widehat{ACB}=\widehat{MBA}-\widehat{NCA}=\left(\widehat{MAO}+\widehat{OAB}\right)-\left(\widehat{NAO}+\widehat{OAC}\right)\)
\(=\left(\widehat{MAO}-\widehat{NAO}\right)+\left(\widehat{OAB}-\widehat{OAC}\right)\)(**)
Từ (*), (**) suy ra \(\widehat{MAO}-\widehat{NAO}=0\Rightarrow\widehat{MAO}=\widehat{NAO}\)
=> AO là phân giác góc MAN
\(lm \) \(ik :(\)
\(lm\)\(ik\)\(m.n\)
\(2m^213dm^2=2,13m^2\)
\(1m^220dm^2=1,2m^2\)
\(4m^25dm^2=4,05m^2\)
\(3m^217dm^2=317dm^2\)