\(\hept{\begin{cases}\frac{0.64a}{a+b}=0.3\\\frac{0.01bx}{a+b}=0.1\end{cases}}\)
Tìm x.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(2\sin^2\frac{x}{2}-1=-\cos x\)
Do đó: \(\frac{2\sin^2\frac{x}{2}+\sin2x-1}{2\sin x-1}+\sin x\)
\(=\frac{-\cos x+2\sin x.\cos x}{2\sin x-1}+\sin x\)
\(=\cos x+\sin x=\sqrt{2}\sin\left(x+\frac{\pi}{4}\right)\)
sửa lại đầu bài đi nha, phải là tam giác ABC vuông tại A vì nếu AC=1/2 BC thì AB+AC=BC ( trái với bất đẳng thức tam giác)
a) xét tam giác ABC và tam giác ABD có
AC=AD( gt)
AB chung
CAB=DAB(=90 độ)
=> tam giác CAB= tam giác DAB(cgc)
=> BC=BD( hai cạnh tương ứng)
b) vì BC=BD=> BD=2AC
vì AD=AC=> CD=2AC
=> BC=BD=CD=2AC=> tam giác BCD đều
\(\frac{x}{2x-3}-\frac{5}{x}=\frac{-1}{2x^2-3x}\)
\(< =>\frac{x^2}{2x^2-3x}-\frac{10x-15}{2x^2-3x}=\frac{-1}{2x^2-3x}\)
\(< =>x^2-10x+15=-1\)
\(< =>x^2-10x+16=0\)
Ta có : \(\Delta=100-4.16=100-64=36\)
nên phương trình sẽ có 2 nghiệm phân biệt
\(x_1=\frac{10+\sqrt{36}}{2}=\frac{10+6}{2}=8\)
\(x_2=\frac{10-\sqrt{36}}{2}=\frac{10-6}{2}=2\)
vậy phương trình có 2 nghiệm phân biệt là {2;8}
\(\frac{x}{2x-3}-\frac{5}{x}=\frac{-1}{2x^2-3x}\) ĐKXĐ : \(x\ne0;\frac{3}{2}\)
\(\frac{2x}{x\left(2x-3\right)}-\frac{5\left(2x-3\right)}{x\left(2x-3\right)}=\frac{-1}{2x^2-3x}\)
\(\frac{2x}{2x^2-3x}-\frac{10x-15}{2x^2-3x}=\frac{-1}{2x^2-3x}\)
Khử mẫu ta đc ; \(2x-10x-15=-1\)
\(-12x=14\Leftrightarrow x=-\frac{7}{6}\)(tm)
HÁ ? lp 5 đã hc đến cái pt bậc 2 này rồi á e ... tuổi trẻ tài cao ghê :))
a, \(x^2-3x+2=0\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
b, \(x^2+5x-6=0\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-6\end{cases}}\)
ò tớ phân tích cho cậu nhé ka xem huynh đã hc chưa nhỉ :>> cậu phân tích đi có j tớ phân tích đầy đủ cậu xem nhớ :>> hay cứ pk dùng trung gian j j thế >>:
Đề bài: Tính
\(A=\frac{1}{2}+\frac{1}{8}+\frac{1}{32}+\frac{1}{128}+\frac{1}{512}+\frac{1}{2048}\)
\(A=\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}+\frac{1}{2^{11}}\)
\(2^2.A=2+\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}\)
\(4A-A=\left(2+\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}+\frac{1}{2^{11}}\right)\)
\(3A=2-\frac{1}{2^{11}}\)
\(\Rightarrow A=\frac{2-\frac{1}{2^{11}}}{3}\)
Vậy \(A=\frac{2-\frac{1}{2^{11}}}{3}\).
ta có
A= 1/2+ 1/8+1/32+1/128+1/512+1/2048
=> A= 1/2 +1/ 2^3 +1/2^5 +1/2^7+1/2^9+1/2^11
=> 2^2 A=2+1/2+1/2^3+1/2^5+1/2^7+1/2^9
=> 2^2A-A= (2+1/2+1/2^3+1/2^5+1/2^7+1/2^9)-(1/2+1/2^3+/2^5+1/2^7+1/2^9+1/2^11)
=> 3A= 2- 1/2^11
=>3A= 4095/2048
=> A= 1365/2048
Từ hệ phương trình => x, a, b khác 0
Chia vế theo vế của 2 phương trình ta có:
\(\frac{64a}{bx}=3\)
<=> \(\frac{b}{a}=\frac{64}{3x}\)
=> \(\frac{0,64a}{a+b}=0,3\)
<=> \(\frac{a+b}{0,64a}=\frac{1}{0,3}\)
<=> \(\frac{1}{0,64}+\frac{1}{0,64}.\frac{b}{a}=\frac{1}{0,3}\)
<=> \(\frac{1}{0,64}+\frac{1}{0,64}.\frac{64}{3x}=\frac{1}{0,3}\)
<=> \(x=\frac{320}{17}\)thỏa mãn.
Vậy...