Tính giá trị biểu thức:
C=\(\frac{6}{1.4}\)+ \(\frac{6}{4.7}\)+ \(\frac{6}{7.10}\)+ ..... + \(\frac{6}{97.100}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
30 phút = 0.5 giờ
Sau 30 phút, xe máy đi được quãng đường là:
40 * 0.5 = 20 (km)
Hiệu 2 vận tốc của xe máy và ô tô là :
55 - 40 = 15(km)
thời gian ô tô đuổi kịp xe máy là: 20 : 15 = 20/15=4/3 h
4/3 =80/60 h= 80phuts=1h20p
Theo bđt trong tam giác thì \(\hept{\begin{cases}a< b+c\\b< c+a\\c< a+b\end{cases}}\)
Khi đó \(\hept{\begin{cases}2a< a+b+c\\2b< a+b+c\\2c< a+b+c\end{cases}}\Leftrightarrow\hept{\begin{cases}2a< 2\\2b< 2\\2c< 2\end{cases}}\Leftrightarrow\hept{\begin{cases}a< 1\\b< 1\\c< 1\end{cases}}\)
\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)>0\)
\(\Leftrightarrow1-\left(a+b+c\right)+ab+bc+ca-abc>0\)
\(\Leftrightarrow1-2+ab+bc+ca>abc\)
\(\Leftrightarrow-1+ab+bc+ca>abc\)
\(\Leftrightarrow-2+2ab+2bc+2ca>2abc\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)-2>a^2+b^2+c^2+2abc\)
\(\Leftrightarrow\left(a+b+c\right)^2-2>a^2+b^2+c^2+2abc\)
\(\Leftrightarrow2>a^2+b^2+c^2+2abc\left(đpcm\right)\)
Chứng minh:4 = 5 .Ta có :
-20 = -20
<=> 25 - 45 = 16 - 36
=> 5^2 - 2.5.9/ 2 = 4^2 - 2.4.9/2
Cộg cả 2 vế với (9/2)^2 để xuất hiện hằg đẳg thức :
5^2 - 2.5.9/2 + (9/2)^2 = 4^2 - 2.4.9/2 + (9/2)^2
<=> (5 - 9/2)^2 = (4 - 9/2 )^2
=> 5 - 9/2 = 4 - 9/2
=> 5 = 4
#Thiên_Hy
\(C=2.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\right)\)
\(=2.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(=2.\left(1-\frac{1}{100}\right)\)
\(=2.\frac{99}{100}=\frac{198}{100}\)
C = \(3\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{97.100}\right)\)
C = \(3\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)
C = 3 \(\left(1-\frac{1}{100}\right)\)
C = 3 \(\left(\frac{100}{100}-\frac{1}{100}\right)\)
C = \(3.\frac{99}{100}\)
C = \(\frac{297}{100}\)