nhà hồng và nhà hà cách nhau 1,8 km cùng một lúc ,hồng đi xe đạp đến nhà hà ,hà đi bộ đến nhà hồng hai bạn gặp nhau sau khi khởi hành 9 phút tính vận tốc của mỗi bạn biết rằng vận tốc của hông hơn vận tốc của hà là 4 km/giờ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
(2/2017 + 2/2018) / (5/2017 + 5/2018)
= 2 x (1/2017 + 1/2018) / 5 x (1/2017 + 1/2018)
= 2/5 (vì (1/2017 + 1/2018) khác 0)
\(\frac{\frac{2}{2017}+\frac{2}{2018}}{\frac{5}{2017}+\frac{5}{2018}}\)
\(=\frac{2\left(\frac{1}{2017}+\frac{1}{2018}\right)}{5\left(\frac{1}{2017}+\frac{1}{2018}\right)}\)
\(=\frac{2}{5}\)
Study well ! >_<
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐỂ MÌNH GIẢI LUÔN CHO , CÁC BẠN VÀO THAM KHẢO NHÉ , THẤY ĐÚNG THÌ CHO XIN 3K NHA :
*Cách 1 :Giả sử p và p + 2 là số nguyên tố lớn hơn 3. Khi đó p không chia hết cho 3. Áp dụng định lí phép chia có dư ta có p = 3q + 1 hoặc p = 3q + 2 với q nguyên dương. Vì p + 2 cũng là số nguyên tố nên không thể xảy ra p = 3q + 1 (vì nếu trái lại thì p + 2 = 3q + 1 + 2 = 3q + 3 là hợp số). Vậy p = 3q + 2, suy ra 3q = p - 2, suy ra q là ước của p - 2, vì p > 3 nên p lẻ, suy ra p -2 lẻ và do đó q lẻ. Khi đó ta có p + p + 2 = 2(p + 1) = 2(3q + 2 + 1) = 6(q + 1) chia hết cho 12 (vì q lẻ).
* Cách 2 : Vậy ta sẽ chứng minh bằng phản chứng
<> p = 6n hoạc p = 6n + 1 .... hoạc p = 6n + 4
- với p = 6n ( n >= 1) => p là hợp số mâu thuẫn
- với p = 6n + 1 ( n >= 1) => p + 2 = 6n + 3 = 3(2n + 1) là hợp số => mâu thuẫn
- ....
- với p = 6n + 4 ( n>= 0) => p cũng là hợp số
Vậy p + 1 phải chia hết cho 6 hay p + p + 2 phải chia hết cho 12
*Cách 1 :Giả sử p và p + 2 là số nguyên tố lớn hơn 3. Khi đó p không chia hết cho 3. Áp dụng định lí phép chia có dư ta có p = 3q + 1 hoặc p = 3q + 2 với q nguyên dương. Vì p + 2 cũng là số nguyên tố nên không thể xảy ra p = 3q + 1 (vì nếu trái lại thì p + 2 = 3q + 1 + 2 = 3q + 3 là hợp số). Vậy p = 3q + 2, suy ra 3q = p - 2, suy ra q là ước của p - 2, vì p > 3 nên p lẻ, suy ra p -2 lẻ và do đó q lẻ. Khi đó ta có p + p + 2 = 2(p + 1) = 2(3q + 2 + 1) = 6(q + 1) chia hết cho 12 (vì q lẻ).
* Cách 2 : Vậy ta sẽ chứng minh bằng phản chứng
- giả sử p + p + 2 không chia hết cho 12 <> p + 1 không chia hết cho 6
<> p = 6n hoạc p = 6n + 1 .... hoạc p = 6n + 4
- với p = 6n ( n >= 1) => p là hợp số mâu thuẫn
- với p = 6n + 1 ( n >= 1) => p + 2 = 6n + 3 = 3(2n + 1) là hợp số => mâu thuẫn
- ....
- với p = 6n + 4 ( n>= 0) => p cũng là hợp số
Vậy p + 1 phải chia hết cho 6 hay p + p + 2 phải chia hết cho 12
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(12^{13}=12^{3.4+1}=\left(12^4\right)^3.12\)
Mà ( 124 )3 có chữ số tận cùng là 6
=> \(\left(12^4\right)^3.12\) có chữ số tận cùng là 2
=> \(12^{13}\) có chữ số tận cùng là 2
\(13^{12}=13^{3.4}=\left(13^4\right)^3\)
Mà \(\left(13^4\right)^3\) có chữ số tận cùng là 1
=> \(13^{12}\) có chữ số tận cùng là 1
Study well ! >_<
+) Ta có: \(12^{13}=12^{3.4+1}=12^{3.4}.12=\overline{...6}\times12=....2\)
Vậy 1213 có chữ số tận cùng là 2.
+) Ta có: \(13^{12}=13^{3.4}=....1\)
Vậy 1312 có tận cùng bằng 1.
![](https://rs.olm.vn/images/avt/0.png?1311)
mik nghĩ đường phân giác phải là BD.
cách giải như sau:
vì BD và CE là 2 đường phân giác của tam giác ABC, mà chúng cắt nhau tại I
nên I là giao 3 đường phân giác của tam giác ABC.
=> AI là đường phân giác thứ 3 của tam giác ABC.
suy ra: góc BAH = góc CAH
tam giác AHB và tam giác AHC có:
AH: cạnh chung
góc BAH = góc CAH (chứng minh trên)
AB = AC (vì tam giác ABC cân tại A)
Do đó: tam giác AHB = tam giác AHC(c.g.c)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số cần tìm là a ( \(10\le a\le99\))
Ta có: \(\hept{\begin{cases}a-4⋮11\\a-5⋮7\end{cases}\Rightarrow}\hept{\begin{cases}3a-12⋮11\\3a-15⋮7\end{cases}\Rightarrow\hept{\begin{cases}3a-1⋮11\\3a-1⋮7\end{cases}}}\)
Như vậy 3a-1 là bội chung của 11, 7
Mà \(10\le a\le99\Rightarrow29\le3a-1\le296\)
BC(7, 11)={0; 77; 154; 231; 308;...}
=> \(3a-1\in\left\{77;154;231\right\}\)
Với 3a-1=77 => a=26
Với 3a-1=154=> 155/3 (loại)
Với 3a-1=231=> a=232/3 (loại)
Thử lại a=26 thỏa mãn