\(\dfrac{27^4.4^3}{9^5.8^2}\);\(\dfrac{3^{29}.4^{16}}{27^9.8^{11}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để tính góc zOm, ta biết rằng tia Om là tia phân giác của góc zOy. Vì góc zOy là 60 độ, nên góc zOm cũng là 60/2 = 30 độ.
b) Để xác định xem tia Ox có phải là tia phân giác của góc yOn hay không, ta cần vẽ tia On là tia đối của tia Om. Sau đó, ta kiểm tra xem tia Ox có đi qua điểm phân giác của góc yOn hay không.
a) Do Om là tia phân giác của ∠xOz
⇒ ∠xOm = ∠zOm = xOz : 2 = 60⁰ : 2 = 30⁰
b) Ta có:
∠xOz + ∠yOz = 180⁰ (kề bù)
⇒ ∠yOz = 180⁰ - ∠xOz
= 180⁰ - 60⁰
= 120⁰
Do On là tia phân giác của ∠zOy
⇒ ∠yOn = ∠zOn = zOy : 2 = 120⁰ : 2 = 60⁰
c) ∠mOn = ∠mOz + ∠zOn
= 30⁰ + 60⁰
= 90⁰
Lời giải:
$(\frac{1}{3})^{2x-1}=\frac{1}{243}=(\frac{1}{3})^5$
$\Rightarrow 2x-1=5$
$\Rightarrow 2x=6$
$\Rightarrow x=3$
\(\left(\dfrac{1}{3}\right)^{2x-1}=\dfrac{1}{243}\)
\(\left(\dfrac{1}{3}\right)^{2x-1}=\left(\dfrac{1}{3}\right)^5\)
=> \(2x-1=5\)
\(2x=6\)
\(x=3\)
2.(x-3)+3x+0.5=\(\dfrac{3}{4}\)
4x+2+4x=272
(1,2-5x).(2\(\dfrac{1}{8}\) +1/2 x)=0
GIÚP MÌNH VỚI !!!!
\(2\left(x-3\right)+3x+0,5=\dfrac{3}{4}\\ \Leftrightarrow2x-6+3x+\dfrac{1}{2}=\dfrac{3}{4}\\ \Leftrightarrow x\left(2+3\right)=\dfrac{3}{4}-\dfrac{1}{2}+6\\ \Leftrightarrow5x=\dfrac{25}{4}\\ \Leftrightarrow x=\dfrac{25}{4}:5=\dfrac{5}{4}\\ ---\\ 4^{x+2}+4^x=272\\ \Leftrightarrow4^x\left(4^2+1\right)=272\\ \Leftrightarrow4^x.17=272\\ \Leftrightarrow4^x=\dfrac{272}{17}=16=4^2\\ Vậy:x=2\\ ----\\ \left(1,2-5x\right)\left(2\dfrac{1}{8}+\dfrac{1}{2}x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}1,2-5x=0\\2,125+0,5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=1,2\\0,5x=-2,125\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1,2}{5}=0,24\\x=\dfrac{-2,125}{0,5}=-4,25\end{matrix}\right.\)
a) \(2\left(x-3\right)+3x+0,5=\dfrac{3}{4}\)
\(\Rightarrow2x-6+3x+\dfrac{1}{2}=\dfrac{3}{4}\)
\(\Rightarrow5x-6=\dfrac{3}{4}-\dfrac{1}{2}\)
\(\Rightarrow5x-6=\dfrac{1}{4}\)
\(\Rightarrow5x=\dfrac{1}{4}+6\)
\(\Rightarrow5x=\dfrac{25}{4}\)
\(\Rightarrow x=\dfrac{25}{4}:5\)
\(\Rightarrow x=\dfrac{5}{4}\)
b) \(4^{x+2}+4^x=272\)
\(\Rightarrow4^x\cdot4^2+4^x\cdot1=272\)
\(\Rightarrow4^x\cdot\left(16+1\right)=272\)
\(\Rightarrow4^x\cdot17=272\)
\(\Rightarrow4^x=16\)
\(\Rightarrow4^x=4^2\)
\(\Rightarrow x=2\)
c) \(\left(1,2-5x\right)\left(2\dfrac{1}{8}+\dfrac{1}{2}x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}1,2-5x=0\\\dfrac{15}{8}+\dfrac{1}{2}x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}5x=1,2\\\dfrac{1}{2}x=-\dfrac{15}{8}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1,2}{5}\\x=-\dfrac{15}{8}:\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{6}{25}\\x=-\dfrac{15}{4}\end{matrix}\right.\)
\(\left|\dfrac{1}{2}x\right|=3-2x\\ \Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=3-2x\\\dfrac{1}{2}x=-3+2x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}x+2x=3\\\dfrac{1}{2}x-2x=-3\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\dfrac{5}{2}x=3\\-\dfrac{3}{2}x=-3\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\\x=2\end{matrix}\right.\)
`2:(1/2-2/3)^2+0,125^3xx8^3-(-12)^4:36^2`
`=2:(-1/6)^2+(0,125*8)^3-12^4:6^4`
`=2:1/36+1-(12:6)^4`
`=2xx36+1-2^4`
`=72+1-16`
`=73-16`
`=57`
2:(\(\dfrac{1}{2}\)-\(\dfrac{2}{3}\))\(^2\)+0,125\(^3\)x8\(^3\)-(-12)\(^4\):36\(^2\)
=2:(\(\dfrac{-1}{6}\))\(^2\)+\(\dfrac{1}{512}\)x512+12\(^4\):1296
=2:\(\dfrac{1}{36}\)+\(\dfrac{1}{512}\)x512+20736:1296
=72+1+16
=73+16
=89
a)\(\dfrac{27^4.4^3}{9^5.8^2}\)
=\(\dfrac{3^{12}.2^6}{3^{10}.2^6}\)
=3\(^2\)=9
b)\(\dfrac{3^{29}.4^{16}}{27^9.8^{11}}\)
=\(\dfrac{3^{29}.2^{32}}{3^{27}.2^{33}}\)
=\(\dfrac{9}{2}\)
\(\dfrac{27^4.4^3}{9^5.8^2}=\dfrac{\left(3^3\right)^4.\left(2^2\right)^3}{\left(3^2\right)^5.\left(2^3\right)^2}=\dfrac{3^{12}.2^6}{3^{10}.2^6}=\dfrac{3^{12}}{3^{10}}=3^2=9\)
_________
\(\dfrac{3^{29}.4^{16}}{27^9.8^{11}}=\dfrac{3^{29}.\left(2^2\right)^{16}}{\left(3^3\right)^9.\left(2^3\right)^{11}}=\dfrac{3^{29}.2^{32}}{3^{27}.2^{33}}=\dfrac{1}{3^2.2}=\dfrac{1}{9.2}=\dfrac{1}{18}\)