K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2021

Với mọi dãy (xn):xn>1

\(\forall\)n và \(limx_n=1\)ta có \(lim_{x\rightarrow1^+}\frac{4x-3}{x-1}=lim\frac{4x_n-3}{x_n-1}=+\infty\)

23 tháng 2 2021

Đặt f(x)=cosx.

Chọn hai dãy số {xn} và {yn} với :

* xn=2nπ⇒xn→+∞ khi n→+∞ và ta được :

f(xn)=cos(xn)=cos(2nπ)=n→+∞1 .

* yn=π2+nπ⇒yn→+∞ khi n→+∞ và ta được :

f(yn)=cos(yn)=cos(π2+nπ)=n→+∞0.

Vậy limx→∞cosx không tồn tại.

Hai câu kia của mình bị lỗi ,không biết câu này có bị không

23 tháng 2 2021

Đặt f(x)=cosx.

Chọn hai dãy số {xn} và {yn} với :

* xn=2nπ⇒xn→+∞ khi n→+∞ và ta được :

f(xn)=cos(xn)=cos(2nπ)=n→+∞1 .

* yn=π2+nπ⇒yn→+∞ khi n→+∞ và ta được :

f(yn)=cos(yn)=cos(π2+nπ)=n→+∞0.

Vậy limx→∞cosx không tồn tại.

Hai câu kia mình bị lỗi nha.

23 tháng 2 2021

\(\hept{\begin{cases}lim_{x\rightarrow3^+}\frac{\left|x-3\right|}{x-3}=lim_{x\rightarrow3^+}\frac{x-3}{x-3}=1\\lim_{x\rightarrow3^-}\frac{\left|x-3\right|}{x-3}=lim_{x\rightarrow3^-}\frac{-x+3}{x-3}=-1\end{cases}\Rightarrow lim_{x\rightarrow3^+}\frac{\left|x-3\right|}{x-3}\ne lim_{x\rightarrow3^-}\frac{\left|x-3\right|}{x-3}}\)

=> đpcm

23 tháng 2 2021

em gửi bài

23 tháng 2 2021
em gửi bài bằng hình ảnh ạ

Bài tập Tất cả

25 tháng 2 2021

Ta có limx→0−f(x)=limx→0−(mx+m+14)=m+14limx→0−⁡f(x)=limx→0−⁡(mx+m+14)=m+14.

limx→0+f(x)=limx→0+√x+4−2x=limx→0+x+4−4x(√x+4+2)=limx→0+1√x+4+2=14limx→0+⁡f(x)=limx→0+⁡x+4−2x=limx→0+⁡x+4−4x(x+4+2)=limx→0+⁡1x+4+2=14.

Để hàm số có giới hạn tạix=0x=0 thì limx→0−f(x)=limx→0+f(x)⇔m+14=14⇔m=0limx→0−⁡f(x)=limx→0+⁡f(x)⇔m+14=14⇔m=0.

22 tháng 2 2021

S A B C D K

gọi K thuộc SC sao cho DK ​​\(\perp\) SC , BK \(\perp\)SC

=> ((SCD),(SBC)) = (DK,KB)

tính được SD = \(\frac{\sqrt{10}}{2}\)a, AC = \(\sqrt{3}\)a, SC= \(\frac{3\sqrt{2}}{2}\)a

\(DC^2=SD^2+SC^2-2SD.SC.cos\widehat{DSC}\)

=> \(\widehat{DSC}\)=....... (số xấu)

\(sin\widehat{DSC}\)\(\frac{DK}{SD}\)=> DK = \(\frac{\sqrt{2}}{2}\)=BK

\(DB^2=DK^2+BK^2-2.DK.BK.cos\alpha\)=> \(\alpha=\frac{\pi}{2}\)

22 tháng 2 2021

quản lí hỏi để thử tài học sinh à

22 tháng 2 2021

Hai mặt phẳng (AB′D′)(AB′D′) và (A′C′D)(A′C′D) có giao tuyến là EFEF như hình vẽ.

Hai tam giácΔA′C′D=ΔD′AB′ΔA′C′D=ΔD′AB′và EFEF là đường trung bình của hai tam giác nên từ A′A′ và D′D′ ta kẻ 2 đoạn vuông góc lên giao tuyến EFEF sẽ là chung một điểm HH như hình vẽ.

Khi đó, góc giữa hai mặt phẳng cần tìm chính là góc giữa hai đường thẳng A′HA′H và D′HD′H.

Tam giác DEFDEF lần lượt cóD′E=D′B′2=√132D′E=D′B′2=132,D′F=D′A2=52D′F=D′A2=52,EF=B′A2=√5EF=B′A2=5.

Theo hê rông ta có:SDEF=√614SDEF=614. Suy raD′H=2SDEFEF=√30510D′H=2SDEFEF=30510.

Tam giác D′A′HD′A′H có:cosˆA′HD′=HA′2+HD′2−A′D′22HA′.HD′=−2961cos⁡A′HD′^=HA′2+HD′2−A′D′22HA′.HD′=−2961.

Do đóˆA′HD′≈118,4∘A′HD′^≈118,4∘hay(ˆA′H,D′H)≈180∘−118,4∘=61,6∘(A′H,D′H^)≈180∘−118,4∘=61,6∘.

12 tháng 5 2021

 là hình chiếu vuông góc của D' trên (ABCD).

\Rightarrow \Delta ACD là hình chiếu vuông góc của \Delta ACD' trên mặt phẳng (ABCD).

Do đó \cos \alpha = \dfrac{S_{ACD}}{S_{ACD'}} với \alpha là góc cần tìm.

Ta có \left\{ \begin{aligned} & DA^2 + DC^2 = 3\\ & DC^2 + DD'^2 = 4\\ & DA^2 + DD'^2 = 5\\ \end{aligned}\right. \Leftrightarrow \left\{ \begin{aligned} & DA^2 = 2\\ & DC^2 = 1\\ & DD'^2 = 3\\ \end{aligned}\right..

\Rightarrow S_{ACD} = \dfrac12.DA.DC = \dfrac{\sqrt2}2.

Dùng công thức Hê rông ta có S_{ACD'} = \dfrac{\sqrt{11}}2.

Vậy \cos \alpha = \sqrt{\dfrac2{11}}.

22 tháng 2 2021

Hai mặt phẳng (AB′D′)(AB′D′) và (A′C′D)(A′C′D) có giao tuyến là EFEF như hình vẽ.

Hai tam giác ΔA′C′D=ΔD′AB′ΔA′C′D=ΔD′AB′ và EFEF là đường trung bình của hai tam giác nên từ A′A′ và D′D′ ta kẻ 2 đoạn vuông góc lên giao tuyến EFEF sẽ là chung một điểm HH như hình vẽ.

Khi đó, góc giữa hai mặt phẳng cần tìm chính là góc giữa hai đường thẳng A′HA′H và D′HD′H.

Tam giác DEFDEF lần lượt có D′E=D′B′2=√132D′E=D′B′2=132, D′F=D′A2=52D′F=D′A2=52, EF=B′A2=√5EF=B′A2=5.

Theo hê rông ta có: SDEF=√614SDEF=614. Suy ra D′H=2SDEFEF=√30510D′H=2SDEFEF=30510.

Tam giác D′A′HD′A′H có: cosˆA′HD′=HA′2+HD′2−A′D′22HA′.HD′=−2961cos⁡A′HD′^=HA′2+HD′2−A′D′22HA′.HD′=−2961.

Do đó ˆA′HD′≈118,4∘A′HD′^≈118,4∘ hay (ˆA′H,D′H)≈180∘−118,4∘=61,6∘(A′H,D′H^)≈180∘−118,4∘=61,6∘.

12 tháng 5 2021

Gọi N và P lần lượt là trung điểm của SA và AB.

Theo tính chất đường trung bình trong tam giác ta có NP // SB và PC // AM.

Suy ra \alpha = \widehat{NP, PC}.

Ta có NP = \dfrac{SB}2 = \dfrac{\sqrt5}2 và PC = AM = \sqrt 5;\\ NC = \sqrt{NA^2 + AC^2} = \sqrt{\dfrac14 + 8} = \dfrac{\sqrt{33}}2.

\Rightarrow \cos \widehat{NPC} = \dfrac{NP^2+PC^2-NC^2}{2.NP.PC} = \dfrac{\dfrac54 + 5 - \dfrac{33}4}{2.\dfrac{\sqrt5}2.\sqrt5} = -\dfrac25.

Vậy \cos \alpha = \dfrac25.2/5

22 tháng 2 2021

Ta có {BC⊥ABAB⊥SC⇒AB⊥CE{BC⊥ABAB⊥SC⇒AB⊥CE

Khi đó {CE⊥ABCE⊥SA⇒CE⊥(SAB){CE⊥ABCE⊥SA⇒CE⊥(SAB)

Áp dụng hệ thức lượng trong tam giác vuông ta có: SC2=SE.SB⇒SESB=SC2SB2SC2=SE.SB⇒SESB=SC2SB2, tương tự SDSE=SC2SA2SDSE=SC2SA2

Lại cả CA=AC√2=2a;VS.ABC=13SC.SABC=23a3CA=AC2=2a;VS.ABC=13SC.SABC=23a3

Khi đó VS.CDEVS.ABC=SESBSDSA=SC2SB2.SC2SA2=4648=13VS.CDEVS.ABC=SESBSDSA=SC2SB2.SC2SA2=4648=13

Do đó VS.CDE=13.23a3=2a39VS.CDE=13.23a3=2a39.

22 tháng 2 2021
Với OLM.VNHọc mà như chơi, chơi mà vẫn học