Cho tam giác ABC cân tại A, có BM, CN là đường cao. Chứng minh tứ giác BNMC là hình thang cân
Giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A)x2-(x-1)2=15
=>(x+x-1)(x-x+1)=15
=>(2x-1)1=15
=>2x-1=15
=>2x=16
=>x=8
B)16x-(4x-5)=15
=>(4x)-(4x-5)=15
=>(4x+4x-5)(4x-4x+5)=15
=>(8x-5)5=15
=>8x-5=3
=>8x=8
=>x=1
P = 1+ \(\dfrac{x+3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{8x^2}{4x^2\left(x-2\right)}-\dfrac{3x}{3\left(x^2-4\right)}-\dfrac{1}{x+2}\right)\)
= 1+ \(\dfrac{1}{x+2}:\left(\dfrac{2}{x-2}-\dfrac{x}{\left(x+2\right)\left(x-2\right)}-\dfrac{1}{x+2}\right)\)
=1+\(\dfrac{1}{x+2}:\left(\dfrac{2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{x}{\left(x+2\right)\left(x-2\right)}-\dfrac{1.\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right)\)
= 1 + \(\dfrac{1}{x+2}:\left(\dfrac{2x+4-x-x+2}{\left(x+2\right)\left(x-2\right)}\right)\)
=1 + \(\dfrac{1}{x+2}\): (\(\dfrac{6}{\left(x+2\right)\left(x-2\right)}\))
=1 + \(\dfrac{1}{x+2}\).\(\dfrac{\left(x+2\right)\left(x-2\right)}{6}\)
= 1 + \(\dfrac{x-2}{6}\)
= \(\dfrac{6+x-2}{6}\)
= \(\dfrac{x+4}{6}\)
1. 5.(x+2)-2x.(x+2)=0
(x+2).(5-2x) = 0
+) TH1: x+2=0
=> x=-2
+) TH2: 5-2x=0
=>2x=5
=>x=5/2.
2. (x-1)^2 - 25=0
=> (x-1)^2 = 25
=> (x-1)^2 = 5^2
=> x-1 = 5
=> x=6.
Bạn tham khảo nhé.
Đặt x - 2 = t
=> t^4 + (t - 1)^4 = 1
<=> t^4 + t^4 - 4t^3 + 6t² - 4t + 1 - 1 = 0
<=> 2t^4 - 4t^3 + 6t² - 4t = 0
<=> t(2t^3 - 4t² + 6t - 4) = 0
<=> t( 2t^3 - 2t² + 4t - 2t² + 2t - 4 ) = 0
<=> t[t(2t² - 2t + 4) - 1(2t² - 2t + 4)] = 0
<=> t(t - 1)(2t² - 2t + 4) = 0
=> t = 0
=> t - 1 = 0
=> 2t² - 2t + 4 = 0
=> t = 0
=> t = 1
=> Không có nghiệm
=> x - 2 = 0
=> x - 2 = 1
=> x = 2
=> x = 3
a) Vì ∆ABC vuông tại A có AM là đường trung tuyến
\(\Rightarrow AM=BM=CM=\dfrac{BC}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}\text{∆ABM cân tại M}\\\text{∆ACM cân tại M}\end{matrix}\right.\) mà \(\left\{{}\begin{matrix}\text{MI là đường trung tuyến của ∆ABM}\\\text{MK là đường trung tuyến của ∆ACM}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\text{MI đồng thơi là đường cao của ∆ABM}\\\text{MK đồng thơi là đường cao của ∆ACM}\end{matrix}\right.\)
=> \(\widehat{AKM}=\widehat{MIA}=\widehat{BAC}=90^o\)
=> AIMK là hình chữ nhật
=> KI = AM mà \(AM=\dfrac{BC}{2}\)
\(\Rightarrow KI=AM=\dfrac{BC}{2}\)
∆ABC vuông tại A => BC2 = AB2 + BC2
=> BC2 = 42+32
=> BC2 = 25
=> BC = 5 ( do BC > 0 )
\(\Rightarrow KI=AM=\dfrac{BC}{2}=\dfrac{5}{2}=2,5\) ̣cm
b) Vì M đối xứng với N qua I => \(\left\{{}\begin{matrix}MN ⊥ AB\\MI=IN\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{MIA}=\widehat{NIA}=90^o\\MI=NI\end{matrix}\right.\)
Xét ∆MIA và ∆NIA có :
MI = NI ( cmt ) ; \(\widehat{MIA}=\widehat{NIA}=90^o\) ; AI = IB ( gt )
=> ∆MIA = ∆NIB ( c.g.c) => \(\widehat{A_1}=\widehat{B_1}\)
Mà \(\widehat{A_1}\text{ và }\widehat{B_1}\) so le trong
=> AM // NB mà AM = NB ( do ∆MIA = ∆NIB )
=> MBNA là hình bình hành mà MN ⊥ AB
=> MBNA là hình thoi