K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2018

Theo BĐT AM-GM: \(a^4+b^4\ge2a^2b^2\)

Tương tự suy ra \(a^4+b^4+c^4\)\(\ge a^2b^2+b^2c^2+c^2a^2\)

Tiếp tục dùng AM-GM: \(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2ab^2c\)

Tương tự suy ra \(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)

\(\Rightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

\(\Rightarrow a^4+b^4+c^4+abcd\ge abc\left(a+b+c\right)+abcd\)\(=abc\left(a+b+c+d\right)\)

\(\Rightarrow\frac{1}{a^4+b^4+c^4+abcd}\le\frac{1}{abc\left(a+b+c+d\right)}\)

Tương tự cho 3 BĐT còn lại rồi cộng theo vế:

\(VT\le\frac{a+b+c+d}{abcd\left(a+b+c+d\right)}=\frac{1}{abcd}=VP\)

5 tháng 1 2018

sorry nha!Mik ko bít làm.???

5 tháng 1 2018

Áp dụng bđt Bu-nhi-a, ta có 

\(\sqrt{\left(a+b\right)\left(a+c\right)}\ge\sqrt{ab}+\sqrt{ac}\)

=>\(\frac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{a}{a+\sqrt{ab}+\sqrt{ac}}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

Tương tự, rồi + vào, ta có 

A\(\le\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}+\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}+\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\) (ĐPCM)

dấu =xảy ra <=>a=b=c>o

^_^

5 tháng 1 2018

Vẽ hình giúp mình luôn nha cảm ơn nhiều

5 tháng 1 2018

oke mk sẽ ủng hộ bn m,k sẽ dăng kí nhé bn hãy đăng nhìu bài thật hay nhé^^

bn đăng bài hát nhật nhé đc k mk rất thick nghe nhạc nhật đó

mk ko vào đc là thế nào

5 tháng 1 2018

vì a,b,c\(\in\left[0;1\right]\)

=>(1)\(b^2\le b;c^3\le c\Rightarrow a+b^2+c^3\le a+b+c\Rightarrow a+b^2+c^3-ab-bc-ca\le a+b+c-ab-bc-ca\)

mà \(a,b,c\in\left[0;1\right]\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\)

=>\(abc+a+b+c-ab-bc-ca-1\le0\)

=>\(a+b+c-ab-bc-ca\le1-abc\le1\left(vi:abc\ge0\right)\) (2)

Từ (1) và (2) => ĐPCM

Dấu = xảy ra <=>2 số = 0  và 1 số = 1 hoặc 2 số = 1 và 1 số = 0

^_^