Tính :\(\sqrt{\frac{9}{2}}+\sqrt{\frac{1}{2}}-\sqrt{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Top 15 bản nhạc EDM Hay nhất - Các cuộc chiến của những vị thần - YouTube
![](https://rs.olm.vn/images/avt/0.png?1311)
b(9)=(0,9,18,27,36,45,54,63,72,81,.....)
nhiều lắm kể ko hết đâu bạn
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
(Bạn viết phương trình nhé, nó dài nên ngại viết lắm =.=) (a = 1; b' = - m - 1; c = m ^ 2)
Xét phương trình trên có a = 1 khác 0 => Phương tình là phương trình bậc 2 một ẩn
Để phương trình có 2 nghiệm phân biệt <=> \(\Delta'>0\)
<=> b' ^ 2 - ac > 0
<=> (- m - 1) ^ 2 - 1. m ^ 2 > 0
<=> m ^2 + 2m + 1 - m ^ 2 > 0
<=> 2m + 1 > 0
<=> 2m > - 1
<=> m > - 0,5
Vậy để phương trrình có 2 nghiệm phân biệt thì m > - 0,5
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng BĐT Cauchy-Schwarz ta có
BT\(\ge\)\(\frac{\left(1+1+1\right)^2}{ab+bc+ac}+\frac{1}{a^2+b^2+c^2}=\frac{9}{ab+bc+ac}+\frac{1}{a^2+b^2+c^2}\)
\(=\frac{1}{ab+bc+ac}+\frac{1}{ab+bc+ac}+\frac{1}{a^2+b^2+c^2}+\frac{7}{ab+bc+ac}\)
\(\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ac}+\frac{7}{ab+bc+ac}\)\(=1+\frac{7}{ab+bc+ac}\)
Ta lại có ab+bc+ac =< (a+b+c)^2/3 =3
\(\Rightarrow BT\ge1+\frac{7}{3}=\frac{10}{3}\)
Vậy GTNN là \(\frac{10}{3}\)khi a=b=c=1
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có \(\left(1+\frac{1}{n}-\frac{1}{n+1}\right)^2=1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}+2\left(\frac{1}{n}-\frac{1}{n+1}-\frac{1}{n\left(n+1\right)}\right)\)
=\(1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}+2\left(\frac{n+1-n-1}{n\left(n+1\right)}\right)=1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}\left(ĐPCM\right)\)
^_^
\(\sqrt{\frac{9}{2}}+\sqrt{\frac{1}{2}}-\sqrt{2}\)
\(=\sqrt{\frac{3^2}{2}}+\sqrt{\frac{1}{2}}-\sqrt{2}\)
\(=3\sqrt{\frac{1}{2}}+\sqrt{\frac{1}{2}}-\sqrt{2}\)
\(=4\sqrt{\frac{1}{2}}-\sqrt{2}\)
\(=4.\frac{\sqrt{2}}{2}-\sqrt{2}\)
\(=2\sqrt{2}-\sqrt{2}\)
\(=\sqrt{2}\)