\(\dfrac{20009^2}{20008^2+20010^2-2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
$(5a+5)^2+10(a-3)(1+a)+a^2-6a+9$
$=(5a+5)^2+2(a-3)(5a+5)+(a-3)^2$
$=(5a+5+a-3)^2$
$=(6a+2)^2$
b.
$B=(a-b)^3-3(b-a)^2c+3(a-b)c^2-c^3$
$=(a-b)^3-3(a-b)^2c+3(a-b)c^2-c^3$
$=(a-b-c)^3$
1) (3x2 + \(\dfrac{y}{4}\) )3 = (3x2)3 + 3.(3x2)2. \(\dfrac{y}{4}\) + 3.3x2 . \(\dfrac{y^2}{16}\) + \(\dfrac{y^3}{64}\)
2) (4 - 26)3 = 43 - 3.42.26 + 3.4.262 - 263
3) (2a + 3b)2 = (2a)2 + 2.2a.3b + (3b)2
4) (\(\dfrac{b}{2}\) - 5).(\(\dfrac{b}{2}\) + 5) = \(\left(\dfrac{b}{2}\right)^2\) - 52
a.
\(\left(x^2+x\right)^2-6x^2-6x+8=0\)
\(\Leftrightarrow\left(x^2+x\right)^2-6\left(x^2+x\right)+8=0\)
\(\Leftrightarrow\left(x^2+x\right)^2-2\left(x^2+x\right)-4\left(x^2+x\right)+8=0\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)-4\left(x^2+x-2\right)=0\)
\(\Leftrightarrow\left(x^2+x-2\right)\left(x^2+x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\x^2+x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=\dfrac{-1\pm\sqrt{17}}{2}\end{matrix}\right.\)
b.
\(\left(x^2+10x+16\right)\left(x^2+10x+24\right)-20=0\)
\(\Leftrightarrow\left(x^2+10x+16\right)\left(x^2+10x+16+8\right)-20=0\)
\(\Leftrightarrow\left(x^2+10x+16\right)^2+8\left(x^2+10x+16\right)-20=0\)
\(\Leftrightarrow\left(x^2+10x+16\right)^2-2\left(x^2+10x+16\right)+10\left(x^2+10x+16\right)-20=0\)
\(\Leftrightarrow\left(x^2+10x+16\right)\left(x^2+10x+14\right)+10\left(x^2+10x+14\right)=0\)
\(\Leftrightarrow\left(x^2+10x+14\right)\left(x^2+10x+26\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+10x+14=0\\x^2+10x+26=0\left(vn\right)\end{matrix}\right.\)
\(\Leftrightarrow x=-5\pm\sqrt{11}\)
\(\Leftrightarrow x^4+2x^3+2x^2-2x^2-4x-4=0\)
\(\Leftrightarrow x^2\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)=0\)
\(\Leftrightarrow\left(x^2-2\right)\left(x^2+2x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2=0\\x^2+2x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=2\\\left(x+1\right)^2+1=0\left(\text{vô nghiệm}\right)\end{matrix}\right.\)
\(\Leftrightarrow x=\pm\sqrt{2}\)
\(7x^2-x+1=7\left(x^2-\dfrac{x}{7}+\dfrac{1}{196}\right)+\dfrac{27}{28}\)
\(=7\left(x-\dfrac{1}{14}\right)^2+\dfrac{27}{28}\ge\dfrac{27}{28}\forall x\)
\(Min=\dfrac{27}{28}\Leftrightarrow x=\dfrac{1}{14}\)
A= 7x2 - x + 1
A= 7( x2 - 2.1/14x + 1/196) + 27/28
A= 7(x - 1/14)2 + 27/28
A = 7(x - 1/14)2 ≥ 0 ⇔ 7(x-1/14)2 +27/28 ≥ 27/28
A(min)= 27/28 ⇔ x = 1/14
\(=2x^2\left(2x+1\right)+2x\left(2x+1\right)+\left(2x+1\right)\)
\(=\left(2x^2+2x+1\right)\left(2x+1\right)\)
Ta có :
4x3+6x2+4x+1
= (4x3+2x2)+(4x2+2x)+(2x+1)
= 2x2(2x+1)+2x(2x+1)+(2x+1)
= (2x2+2x+1)(2x+1)
\(\dfrac{20009^2}{20008^2+20010^2-2}=\dfrac{20009^2}{\left(20008^2-1^2\right)+\left(20010^2-1^2\right)}=\dfrac{20009^2}{\left(20008+1\right)\left(20008-1\right)+\left(20010+1\right)\left(20010-1\right)}\)
\(=\dfrac{20009^2}{20009.20007+20011.20009}=\dfrac{20009^2}{20009\left(20007+20011\right)}\)
\(=\dfrac{20009}{20007+20011}=\dfrac{20009}{40018}=\dfrac{20009}{2.20009}=\dfrac{1}{2}\)
1/2