Bài 1: so sánh
a) 7/12 và 8/13
b)-27/8 và -4,25
c)-0,33 và -19/38
d)11/-13 và -14/15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ACB và ADC, có \(\widehat{A}\) chung và \(\widehat{ACB}=\widehat{ADC}\left(gt\right)\), suy ra đpcm.
b) Từ câu a) \(\Rightarrow\dfrac{AB}{AC}=\dfrac{AC}{AD}\) \(\Rightarrow AC^2=AB.AD\)
Kẻ phân giác BE của tam giác ABC. Vì \(\widehat{B}=2\widehat{C}\) nên \(\widehat{ABE}=\widehat{ADC}\) hay BE//CD. Mặt khác, \(\dfrac{EA}{EC}=\dfrac{BA}{BC}=\dfrac{4}{5}\) nên suy ra \(\dfrac{BA}{BD}=\dfrac{4}{5}\Leftrightarrow\dfrac{4}{BD}=\dfrac{4}{5}\Leftrightarrow BD=5\), suy ra \(AD=AB+BD=4+5=9\).
\(\Rightarrow AC^2=AB.AD=4.9=36\) \(\Rightarrow AC=6\).
Vậy \(AC=6\)
Dạ thưa cô, cái này em áp dụng tính chất đường phân giác trong tam giác ạ. Cái này lớp 9 được dùng luôn không cần chứng minh ạ.
Bài 1: a, \(\dfrac{4}{35}\) + \(\dfrac{8}{21}\) = \(\dfrac{12}{105}\) + \(\dfrac{40}{105}\) = \(\dfrac{52}{105}\)
b, \(\dfrac{21}{49}\) + \(\dfrac{9}{27}\) = \(\dfrac{567}{1323}\) + \(\dfrac{441}{1323}\) = \(\dfrac{1008}{1323}\) = \(\dfrac{16}{21}\)
c, \(\dfrac{26}{15}\) - \(\dfrac{7}{5}\) = \(\dfrac{26}{15}\) - \(\dfrac{21}{15}\) = \(\dfrac{5}{15}\) = \(\dfrac{1}{3}\)
d, \(\dfrac{29}{36}\) - \(\dfrac{2}{9}\) = \(\dfrac{29}{36}\) - \(\dfrac{8}{36}\) = \(\dfrac{21}{36}\) = \(\dfrac{7}{12}\)
e, \(\dfrac{3}{7}\)\(\times\)\(\dfrac{14}{15}\) = \(\dfrac{2}{5}\)
f, \(\dfrac{35}{9}\): \(\dfrac{7}{81}\) = \(\dfrac{35}{9}\) \(\times\) \(\dfrac{81}{7}\) = 45
g,\(\dfrac{28}{17}\) \(\times\) \(\dfrac{68}{14}\) = 8
h, \(\dfrac{35}{46}\): \(\dfrac{205}{23}\) = \(\dfrac{35}{46}\) \(\times\) \(\dfrac{23}{205}\) = \(\dfrac{7}{82}\)
P = 2\(x\)3 + 3\(x\)2 + 4\(x\) + 5
Thay \(x\) = 3 vào P ta có:
P = 2.33 + 3.32 + 4.3 + 5
P = 54 + 27 + 12 + 5
P = 98
\(S=1+3^2+3^3+3^4+...+3^{2023}\left(1\right)\)
Ta có \(S+3=1+3+3^2+3^3+3^4+...+3^{2023}\)
\(\Rightarrow S+3=\dfrac{3^{2023+1}-1}{3-1}=\dfrac{3^{2024}-1}{2}\)
\(\Rightarrow S=\dfrac{3^{2024}-1}{2}-3==\dfrac{3^{2024}-7}{2}\)
\(S=1+3^2+3^3+3^4+...+3^{2023}\\ 3S=3+3^3+3^4+3^5+...+3^{2024}\\ 3S-S=3+3^3+3^4+3^5+...+3^{2024}-1-3^2-3^3-3^4-...-3^{2023}\\ 2S=3+3^{2024}-1-3^2\\ 2S=3+3^{2024}-1-9\\ 2S=-3+3^{2024}\\ S=\dfrac{-3+3^{2024}}{2}\)
\(x-8:2=-4\\ x-4=-4\\ x=-4+4\\ x=0\\ -5.x-7=-17\\ -5.x=-17+7\\ -5.x=-10\\ x=-10:\left(-5\right)\\ x=2\\ 7.\left(4-x\right)< 0\\ 4-x< 0:7\\ 4-x< 0\\ x\in\left\{5;6;7;8;...\right\}\)
a) \(...\Rightarrow x-4=-4\Rightarrow x=-4+4-0\)
b) \(...\Rightarrow-5x=-17+7\Rightarrow-5x=-10\Rightarrow x=\left(-10\right):\left(-5\right)=2\)
c) \(...\Rightarrow4-x< 0\Rightarrow x>4\)
A = \(\dfrac{254\times399-145}{254+399\times253}\)
A = \(\dfrac{\left(253+1\right)\times399-145}{254+399\times253}\)
A = \(\dfrac{253\times399+399-145}{254+399\times253}\)
A = \(\dfrac{253\times399+254}{254+399\times253}\)
A = 1
a) \(254x399-145=\left(250+4\right)\left(400-1\right)-145\)
\(=100000+1600-250-145-4=101600-\left(250+145+4\right)\)
\(=101600-399=101201\)
b) \(254+399x253=254+\left(400-1\right)x\left(250+3\right)\)
\(=254+100000+1200-250-3\)
\(=101454-250-3=101201\)
a) \(\dfrac{7}{12}< \dfrac{7+1}{12+1}< \dfrac{78}{13}\Rightarrow\dfrac{7}{12}< \dfrac{8}{13}\)
b) \(-4,25=-\dfrac{425}{100}=-\dfrac{17}{4}=-\dfrac{34}{8}< -\dfrac{28}{8}\Rightarrow-4,25< -\dfrac{28}{8}\)
c) \(-0,33>-0,5=-\dfrac{1}{2}=-\dfrac{19}{38}\Rightarrow-0,33>-\dfrac{19}{38}\)
d) \(\dfrac{11}{13}< \dfrac{11+2}{13+2}=\dfrac{13}{15}\Rightarrow\dfrac{11}{13}< \dfrac{13}{15}\Rightarrow-\dfrac{11}{13}>-\dfrac{13}{15}\)