Cho tam giác ABC đường cao AH. Vẽ HD vuông góc với AB. Tia phân giác góc AHC cắt AC tại F. Biết AB=6, AC=8 và AC=10. Tính độ dài AH và chu vi tam giác ADF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : \(\left|x-\frac{1}{3}\right|=\frac{5}{6}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{3}=\frac{5}{6}\\x-\frac{1}{3}=-\frac{5}{6}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{7}{6}\\x=\frac{-1}{2}\end{cases}}\)
Ta có :\(\left|x-\frac{1}{3}\right|=\frac{5}{6}\)
=> \(\orbr{\begin{cases}x-\frac{1}{3}=\frac{5}{6}\\x-\frac{1}{3}=-\frac{5}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{5}{6}+\frac{1}{3}\\x=-\frac{5}{6}+\frac{1}{3}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{7}{6}\\x=-\frac{1}{2}\end{cases}}\)
Vậy \(x\in\left\{\frac{7}{6};-\frac{1}{2}\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{2004\times2004+3006}{2005\times2005-1003}=\frac{2004\times2004+3006}{\left(2004+1\right)\times\left(2004+1\right)-1003}\)
\(\frac{2004\times2004+3006}{2004\times\left(2004+1\right)+1\times\left(2004+1\right)-1003}=\frac{2004\times2004+3006}{2004\times2004+2\times2004+1-1003}\)
\(=\frac{2004\times2004+3006}{2004\times2004+3006}=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta đi chứng minh \(A⋮2,A⋮5\)
+) Ta có : \(A=99999^{1999}-555557^{1997}\equiv1-1\equiv0\left(mod2\right)\)
\(\Rightarrow A⋮2\)
Lại có : \(99999\equiv\left(-1\right)\left(mod5\right)\)
\(\Rightarrow99999^{1999}\equiv\left(-1\right)\left(mod5\right)\)
Vì \(555557\equiv2\left(mod5\right)\)
\(\Rightarrow555557^{1997}\equiv2^{1997}\left(mod5\right)\)
Ta thấy rằng : \(2^2=4\equiv\left(-1\right)\left(mod5\right)\)
\(\Rightarrow\left(2^2\right)^{998}\equiv1\left(mod5\right)\)
\(\Rightarrow2^{1996}\equiv1\left(mod5\right)\)
\(\Rightarrow2^{1997}\equiv2\left(mod5\right)\)
Do đó : \(555557^{1997}\equiv2\left(mod5\right)\)
Vậy \(A\equiv\left(-1\right)-2\equiv\left(-3\right)\left(mod5\right)\)
Hum.... đề sai.
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình dễ vẽ , bạn tự vẽ nha.
a) \(\Delta AKH\)vuông tại A có \(AK^2=KE.KH\)hay \(6^2=KE.10\Rightarrow KE=3,6\)
Vậy KE=3,6
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Để A có nghĩa <=> \(\hept{\begin{cases}2x+10\ne0\\x\ne0\\2x\left(x+5\right)\ne0\end{cases}}\) <=> \(\hept{\begin{cases}x\ne-5\\x\ne0\\x\ne0;x\ne-5\end{cases}}\) <=> \(\hept{\begin{cases}x\ne-5\\x\ne0\end{cases}}\)
b) A = \(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
A = \(\frac{x\left(x^2+2x\right)+2\left(x-5\right)\left(x+5\right)+50-5x}{2x\left(x+5\right)}\)
A = \(\frac{x^3+2x^2+2\left(x^2-25\right)+50-5x}{2x\left(x+5\right)}\)
A = \(\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)
A = \(\frac{x^3+4x^2-5x}{2x\left(x+5\right)}\)
A = \(\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}\)
A = \(\frac{x^2+5x-x-5}{2\left(x+5\right)}\)
A = \(\frac{\left(x-1\right)\left(x+5\right)}{2\left(x+5\right)}=\frac{x-1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) a2 - b2 + 2a - 2b = (a + b)(a - b) + 2(a - b) = (a - b)(a + b + 2)
b) x2 + x - 12 = x2 + 4x - 3x - 12 = x(x + 4) - 3(x + 4) = (x - 3)(x + 4)
c) x4 + 4 = (x4 + 4x2 + 4) - 4x2 = (x2 + 2)2 - 4x2 = (x2 - 2x + 2)(x2 + 2x + 2)
Bài làm :
a) a2 - b2 + 2a - 2b = (a + b)(a - b) + 2(a - b) = (a - b)(a + b + 2)
b) x2 + x - 12 = x2 + 4x - 3x - 12 = x(x + 4) - 3(x + 4) = (x - 3)(x + 4)
c) x4 + 4 = (x4 + 4x2 + 4) - 4x2 = (x2 + 2)2 - 4x2 = (x2 - 2x + 2)(x2 + 2x + 2)
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!