Cho tam giác ABC. N, P, Q theo thứ tự là trung điểm của cạnh AB, BC, CA và I, J,K lầ lượt là trung điểm của các đoạn thẳng NP, BP, NC. Chứng minh tứ giác IJKQ là hình bình hành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì A và B là hai góc phụ nhau nên :
=> A + B = 90
mà A = 3
=> B = 90 - 3 = 87
^A và ^B là hai góc phụ nhau
=> ^A + ^B = 900
=> ^A = 900 - ^B
2^A = 3^B (1)
Thế ^A = 900 - ^B vào (1)
=> (1) <=> 2( 900 - ^B ) = 3^B
<=> 1800 - 2^B = 3^B
<=> 1800 = 3^B + 2^B
<=> 1800 = 5^B
<=> ^B = 1800/5 = 360
^B = 360 => ^A + 360 = 900
=> ^A = 900 - 360 = 540
Vậy ^A = 540 ; ^B = 360
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)
\(P=\left(\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)
\(P=\left(\frac{\sqrt{x}}{\sqrt{x}+3}-\frac{x+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{1}{\sqrt{x}}\right)\)
\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}-3\right)-x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)
\(P=\frac{x-3\sqrt{x}-x-9}{x-9}.\frac{x\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}\)
\(P=\frac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{x\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\)
\(P=\frac{-3x}{2\left(\sqrt{x}+2\right)}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 :
a) \(P=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}}{x-2\sqrt{x}+1}\)
\(P=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right).\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)
\(P=\frac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}-1}{\sqrt{x}}\)
\(P=\frac{\sqrt{x}+1}{x}\)
b) \(P>\frac{1}{2}\)
\(\Leftrightarrow\frac{\sqrt{x}+1}{x}>\frac{1}{2}\)
\(\Leftrightarrow\frac{\sqrt{x}+1}{x}-\frac{1}{2}>0\)
\(\Leftrightarrow\frac{\sqrt{x}+1-2x}{x}>0\)
\(\Leftrightarrow\sqrt{x}-2x+1>0\left(x>0\right)\)
\(\Leftrightarrow\sqrt{x}+x^2-2x+1-x^2>0\)
\(\Leftrightarrow\sqrt{x}+x^2+\left(x-1\right)^2>0\left(\forall x>0\right)\)
Vậy P > 1/2 với mọi x> 0 ; x khác 1
Bài 2 :
a) \(K=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+a}+\frac{2}{a-1}\right)\)
\(K=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{1}{\sqrt{a}\left(\sqrt{a}+1\right)}+\frac{2}{a-1}\right)\)
\(K=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1+2\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}\left(a-1\right)\left(\sqrt{a}+1\right)}\)
\(K=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\sqrt{a}\left(a-1\right)\left(\sqrt{a}-1\right)}{a-1+2a+2\sqrt{a}}\)
\(K=\frac{\left(a-1\right)^2}{3a+2\sqrt{a}-1}\)
b) \(a=3+2\sqrt{2}=2+2\sqrt{2}+1=\left(\sqrt{2}+1\right)^2\)( thỏa mãn ĐKXĐ )
Thay a vào biểu thức K , ta có :
\(K=\frac{\left(3+2\sqrt{2}-1\right)^2}{3\left(3+2\sqrt{2}\right)+2\sqrt{\left(\sqrt{2}+1\right)^2}-1}\)
\(K=\frac{\left(2+2\sqrt{2}\right)^2}{9+6\sqrt{2}+2\left|\sqrt{2}+1\right|-1}\)
\(K=\frac{\left(2+2\sqrt{2}\right)^2}{8+6\sqrt{2}+2\sqrt{2}+2}\)
\(K=\frac{\left(2+2\sqrt{2}\right)^2}{10+8\sqrt{2}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
4 x 10 x 33 + 2 x 36 x 20 + 5 x 31 x 8
= 40 x 33 + 40 x 36 + 40 x 31
= 40 x (33 + 36 + 31)
= 40 x 100 = 4000
![](https://rs.olm.vn/images/avt/0.png?1311)
134×23+134×17-40×34
134×(23+17)-40×34
134×40-40×34
40×(134-34)
40×100
4000
![](https://rs.olm.vn/images/avt/0.png?1311)
Cô ấy ( bà ấy)
Anh ấy (anh ta)
Họ
Chúng tôi
Ở trên
Trên
Trong
Trách nhiệm
Mứt
Một ổ bánh mì
minh anh ơi trang tin nhắn của tớ ko mở được nên ko nhắn được lại cho cậu nha
Mình không biết vẽ hình trên đây nên bạn thông cảm nhé
Xét tam giác CAN có: Q là trung điểm của AC
K là trung điểm của NC
=>QK là đường trung bình của tam giác CAN
=> \(\hept{\begin{cases}QK=\frac{1}{2}AN\\QKsongsongAN\end{cases}}\)(1)
Xét tam giác PBN có: J là trung điểm của BP
I là trung điểm của NP
=> IJ là đường trung bình của tam giác PBN
=>\(\hept{\begin{cases}IJ=\frac{1}{2}BN\\IJsongsongBN\end{cases}}\)(2)
mà AN=BN(N là trung điểm của AB)(3)
=>\(\hept{\begin{cases}QK=IJ\\QKsongsongIJ\end{cases}}\)
Xét tứ giác IJKQ có:
\(\hept{\begin{cases}QK=IJ\\QKsongsong\:IJ\end{cases}}\)
=> IJQK là hình bình hành