K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2020

a. ​3/5 . 15/7 - 15/7 . 8/5

= 15/7(3/5-8/5)

=15/7.  -\(\frac{1}{1}\)

=22/7

b. 4/5 . 1 3/7 + 4/5 . 4/7

=4/5(13/7+4/7)

=4/5.17/7

= 68/35

24 tháng 8 2020

Trần Quốc Anh giúp em với ạ

24 tháng 8 2020

\(\sqrt{\left(\sqrt{3}-3\right)^2}-\sqrt{12+6\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}-3\right)^2}-\sqrt{3+6\sqrt{3}+9}\)

\(=\sqrt{\left(\sqrt{3}-3\right)^2}-\sqrt{\left(\sqrt{3}\right)^2+2\cdot3\cdot\sqrt{3}+3^2}\)

\(=\sqrt{\left(\sqrt{3}-3\right)^2}-\sqrt{\left(\sqrt{3}+3\right)^2}\)

\(=\left|\sqrt{3}-3\right|-\left|\sqrt{3}+3\right|\)

\(=-\left(\sqrt{3}-3\right)-\left(\sqrt{3}+3\right)\)

\(=-\sqrt{3}+3-\sqrt{3}-3\)

\(=-2\sqrt{3}\)

24 tháng 8 2020

Bài làm:

Ta có: \(\sqrt{\left(\sqrt{3}-3\right)^2}-\sqrt{12+6\sqrt{3}}\)

\(=\sqrt{\left(3-\sqrt{3}\right)}-\sqrt{9+6\sqrt{3}+3}\)

\(=3-\sqrt{3}-\sqrt{\left(3+\sqrt{3}\right)^2}\)

\(=3-\sqrt{3}-3-\sqrt{3}\)

\(=-2\sqrt{3}\)

24 tháng 8 2020

Hình đâu bạn

24 tháng 8 2020

Ta viết lại bất đẳng thức cần chứng minh thành\(\sqrt{\frac{2\left(a+3\right)}{a+bc}}+\sqrt{\frac{2\left(b+3\right)}{b+ca}}+\sqrt{\frac{2\left(c+3\right)}{c+ab}}\ge6\)

Theo giả thiết, ta có a + b + c = 3 nên\(\sqrt{\frac{2\left(a+3\right)}{a+bc}}=\sqrt{\frac{2\left(a+a+b+c\right)}{a+bc}}=\sqrt{2\left(\frac{a+b}{a+bc}+\frac{a+c}{a+bc}\right)}\)\(\ge\sqrt{\frac{a+b}{a+bc}}+\sqrt{\frac{a+c}{a+bc}}\)(Áp dụng bất đẳng thức \(\sqrt{2\left(x+y\right)}\ge\sqrt{x}+\sqrt{y}\))

Hoàn toàn tương tự, ta được: \(\sqrt{\frac{2\left(b+3\right)}{b+ca}}\ge\sqrt{\frac{b+a}{b+ca}}+\sqrt{\frac{b+c}{b+ca}}\)\(\sqrt{\frac{2\left(c+3\right)}{c+ab}}\ge\sqrt{\frac{c+a}{c+ab}}+\sqrt{\frac{c+b}{c+ab}}\)

Cộng theo vế ba bất đẳng thức trên, ta được: \(\sqrt{\frac{2\left(a+3\right)}{a+bc}}+\sqrt{\frac{2\left(b+3\right)}{b+ca}}+\sqrt{\frac{2\left(c+3\right)}{c+ab}}\)\(\ge\sqrt{\frac{a+b}{a+bc}}+\sqrt{\frac{a+c}{a+bc}}+\sqrt{\frac{b+a}{b+ca}}+\sqrt{\frac{b+c}{b+ca}}+\sqrt{\frac{c+a}{c+ab}}+\sqrt{\frac{c+b}{c+ab}}\)

Áp dụng bất đẳng thức Bunyakovsky dạng phân thức, ta được: \(\sqrt{\frac{a+b}{a+bc}}+\sqrt{\frac{a+b}{b+ca}}\ge\frac{4\sqrt{a+b}}{\sqrt{a+bc}+\sqrt{b+ca}}\ge\frac{2\sqrt{2}\sqrt{a+b}}{\sqrt{a+bc+b+ca}}=\frac{2\sqrt{2}}{\sqrt{c+1}}\)(*)

Tương tự ta có: \(\sqrt{\frac{b+c}{b+ca}}+\sqrt{\frac{b+c}{c+ab}}\ge\frac{2\sqrt{2}}{\sqrt{a+1}}\)(**) ; \(\sqrt{\frac{c+a}{c+ab}}+\sqrt{\frac{c+a}{a+bc}}\ge\frac{2\sqrt{2}}{\sqrt{b+1}}\)(***)

Cộng theo vế ba bất đẳng thức (*), (**) và (***) suy ra \(\sqrt{\frac{a+b}{a+bc}}+\sqrt{\frac{a+c}{a+bc}}+\sqrt{\frac{b+a}{b+ca}}+\sqrt{\frac{b+c}{b+ca}}+\sqrt{\frac{c+a}{c+ab}}+\sqrt{\frac{c+b}{c+ab}}\)\(\ge\frac{2\sqrt{2}}{\sqrt{c+1}}+\frac{2\sqrt{2}}{\sqrt{a+1}}+\frac{2\sqrt{2}}{\sqrt{b+1}}\)

Do đó ta có: \(\sqrt{\frac{2\left(a+3\right)}{a+bc}}+\sqrt{\frac{2\left(b+3\right)}{b+ca}}+\sqrt{\frac{2\left(c+3\right)}{c+ab}}\ge\frac{2\sqrt{2}}{\sqrt{c+1}}+\frac{2\sqrt{2}}{\sqrt{a+1}}+\frac{2\sqrt{2}}{\sqrt{b+1}}\)

Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{2\sqrt{2}}{\sqrt{c+1}}+\frac{2\sqrt{2}}{\sqrt{a+1}}+\frac{2\sqrt{2}}{\sqrt{b+1}}\ge6\)hay \(\frac{1}{\sqrt{c+1}}+\frac{1}{\sqrt{a+1}}+\frac{1}{\sqrt{b+1}}\ge\frac{3}{\sqrt{2}}\)

Thật vậy, áp dụng bất đẳng thức Cauchy – Schwarz ta được \(\frac{1}{\sqrt{c+1}}+\frac{1}{\sqrt{a+1}}+\frac{1}{\sqrt{b+1}}\ge\frac{9}{\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}}\ge\frac{9}{\sqrt{3\left(a+b+c+3\right)}}=\frac{3}{\sqrt{2}}\)

Vậy bất đẳng thức được chứng minh 

Đẳng thức xảy ra khi a = b = c = 1

24 tháng 8 2020

B nha

k đúng cho mik nhá

24 tháng 8 2020

B1:

Ta có: \(\frac{18}{27}=\frac{2}{3}=\frac{a}{b}\) và ƯCLN (a, b) = 13            (a, b thuộc N*)

=> \(\frac{2.13}{3.13}=\frac{26}{39}=\frac{a}{b}\)

Vậy a/b = 26/39

B2: Bg

Ta có: A = \(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+\dots+\frac{3}{49.51}\)

=> A = \(\frac{3}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\dots+\frac{2}{49.51}\right)\)

=> A = \(\frac{3}{2}.\left(1-\frac{1}{3}+\dots+\frac{1}{49}-\frac{1}{51}\right)\)

=> A = \(\frac{3}{2}.\left(1-\frac{1}{51}\right)\)

=> A = \(\frac{3}{2}.\frac{50}{51}\)

=> A = \(\frac{3.50}{2.51}\)g

=> A = \(\frac{3.2.25}{2.3.17}\) (chịt tiêu 3.2 ở trên và 2.3 ở dưới)

=> A = \(\frac{25}{17}\)t

Mấy cái kia để sau :((, xin lỗi bạn nhiều ạ !

25 tháng 8 2020

Dễ dàng dự đoán được dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)Nhận thấy các đại lượng trong căn và mẫu đồng chưa bậc nên suy nghĩ đầu tiên là đồng bậc. Để ý đến giả thiết a+b+c=1 ta thấy \(a^2+abc=a^2\left(a+b+c\right)+abc=a\left(a+b\right)\left(a+c\right)\)

\(c+ab=a\left(a+b+c\right)+ab=\left(a+c\right)\left(b+c\right)\)

Hoàn toàn tương tự ta có \(b^2+abc=b\left(b+a\right)\left(b+c\right);c^2+abc=c\left(c+b\right)\left(c+a\right)\)

\(b+ac=\left(a+b\right)\left(b+c\right);a+bc=\left(a+b\right)\left(b+c\right)\)

Khi đó bất đẳng thức cần chứng minh trở thành

\(\frac{\sqrt{a\left(a+b\right)\left(a+c\right)}}{\left(a+c\right)\left(b+c\right)}+\frac{\sqrt{b\left(b+c\right)\left(b+a\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{\sqrt{c\left(c+a\right)\left(c+b\right)}}{\left(b+a\right)\left(b+c\right)}\le\frac{1}{2\sqrt{abc}}\)

hay \(\frac{a\sqrt{bc\left(a+b\right)\left(a+c\right)}}{\left(a+c\right)\left(c+b\right)}+\frac{b\sqrt{ab\left(b+c\right)\left(a+b\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{c\sqrt{ab\left(a+b\right)\left(b+c\right)}}{\left(c+b\right)\left(b+a\right)}\le\frac{1}{2\sqrt{abc}}\)

Quan sát bất đẳng thức trên ta liên tưởng đến bất đẳng thức Cauchy, để ý là

\(bc\left(a+b\right)\left(a+c\right)=c\left(a+b\right)\cdot b\left(a+c\right)=b\left(a+b\right)\cdot c\left(a+c\right)\)

Trong 2 cách viết trên ta chọn cách viết thứ nhất vì khi sử dụng bất đẳng thức Cauchy dạng \(2\sqrt{xy}\le x+y\)thì không tạo ra các đại lượng có chứa các bình phương. Khi đó áp dụng bất đẳng thức Cauchy ta được

\(\sqrt{bc\left(a+b\right)\left(a+c\right)}\le\frac{b\left(a+c\right)+c\left(a+b\right)}{2}=\frac{ab+2bc+ca}{2}\)

Áp dụng tương tự ta được

  \(\frac{a\sqrt{bc\left(a+b\right)\left(a+c\right)}}{\left(c+a\right)\left(c+b\right)}+\frac{b\sqrt{ac\left(b+c\right)\left(a+b\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{c\sqrt{ab\left(a+c\right)\left(b+c\right)}}{\left(b+c\right)\left(b+a\right)}\)\(\le\frac{a\left(ab+2bc+ca\right)}{2\left(c+a\right)\left(c+b\right)}+\frac{b\left(ab+bc+2ac\right)}{2\left(a+b\right)\left(a+c\right)}+\frac{c\left(2ab+bc+ca\right)}{2\left(b+c\right)\left(b+a\right)}\)

Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{a\left(ab+2bc+ca\right)}{2\left(c+a\right)\left(c+b\right)}+\frac{b\left(ab+bc+2ac\right)}{2\left(a+b\right)\left(a+c\right)}+\frac{c\left(2ab+bc+ca\right)}{2\left(b+c\right)\left(b+a\right)}\le1\)

hay \(a\left(ab+2bc+ca\right)\left(a+b\right)+b\left(b+c\right)\left(ab+bc+2ca\right)+c\left(c+b\right)\left(2ab+bc+ca\right)\)\(\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Vế trái của bất đẳng thức là bậc bốn còn vế phải là bậc ba nên ta có thể đồng bậc là

\(a\left(ab+2bc+ca\right)+b\left(b+c\right)\left(ab+bc+2ac\right)+c\left(c+b\right)\left(2ab+bc+ca\right)\)

\(\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a+b+c\right)\)

Triển khai và thu gọn ta được \(a^3\left(b+c\right)+b^3\left(c+a\right)+c^3\left(a+b\right)+a^2b^2+b^2c^2+c^2a^2+5\left(a^2bc+ab^2c+abc^2\right)\)

\(\le a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)+2\left(a^2b^2+b^2c^2+c^2a^2\right)+4\left(a^2bc+ba^2c+abc^2\right)\)

hay \(abc\left(a+b+c\right)\le a^2b^2+b^2c^2+c^2a^2\), đây là một đánh giá đúng

Dấu đẳng thức xảy ra tại \(a=b=c=\frac{1}{3}\)

24 tháng 8 2020

    \(\frac{1}{2.15}+\frac{3}{2.11}+\frac{4}{1.11}+\frac{5}{1.2}\)

\(=\frac{1}{30}+\left(\frac{3}{22}+\frac{4}{11}\right)+\frac{5}{2}\)

\(=\frac{1}{30}+\frac{1}{2}+\frac{5}{2}\)

\(=\frac{1}{30}+3\)

\(=\frac{91}{30}\)

24 tháng 8 2020

= 3 \(\frac{1}{30}\)Hoặc  =\(\frac{91}{30}\)

25 tháng 8 2020

Đặt \(\sqrt{a^2-1}=x;\sqrt{b^2-1}=y;\sqrt{c^2-1}=z\)ta viết lại thành x2+y2+z2=1.Bất đẳng thức cần chứng minh tương đương với

\(\left(x+y+z\right)\left(\frac{1}{\sqrt{x^2+1}}+\frac{1}{\sqrt{y^2+1}}+\frac{1}{\sqrt{z^2+1}}\right)\le\frac{9}{2}\)

Theo bất đẳng thức Cauchy-Schwarz ta có

\(\frac{x}{\sqrt{x^2+1}}+\frac{y}{\sqrt{y^2+1}}+\frac{z}{\sqrt{z^2+1}}\le\sqrt{\Sigma\frac{3x^2}{2x^2+y^2+z^2}}\le\sqrt{\frac{3}{4}\Sigma\left(\frac{x^2}{x^2+y^2}+\frac{x^2}{x^2+z^2}\right)}=\frac{3}{2}\)

\(\Leftrightarrow\)\( {\displaystyle \displaystyle \sum } \)\(\frac{y+z}{\sqrt{x^2+1}}\le\sqrt{\Sigma\frac{3\left(y+z\right)^2}{2x^2+y^2+z^2}}\le\sqrt{3\Sigma\left(\frac{y^2}{x^2+y^2}+\frac{z^2}{x^2+z^2}\right)}=3\)

Dấu đẳng thức xảy ra khi \(a=b=c=\frac{2}{\sqrt{3}}\)