Qyu đồng mẫu số các phân số sau :
a) \(\frac{2}{n}\)và \(\frac{2}{n+1}\)
b) \(\frac{1}{n.\left(n+1\right)}\)và \(\frac{-2}{n+1}\)
Giaỉ chi tiết từng phần hộ mình nhé !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải: Số tuổi của mẹ hơn con trước đây ko thay đổi
=> trước đây 4 năm mẹ vẫn hơn con 24 tuổi
Số tuổi của mẹ trước đây 4 năm là :
24 : (4 - 1 ) x 4 = 32 (tuổi)
Số tuổi của mẹ hiện nay là :
32 + 4 = 36 ( tuổi)
Đ/s: ...
Hình bạn tự vẽ nha
Tuổi con cách đây 4 năm là
24:(4-1)x1=8( tuổi)
Tuổi mẹ cách đây 4 năm là
24+8=32( tuổi)
Tuổi mẹ hiện nay là
32+4=36 ( tuổi)
Đáp số : 36 tuổi
#)Giải :
\(\frac{2}{13}=1:\frac{13}{2}\)
\(\Rightarrow\)Số thứ nhất phải nhỏ hơn \(\frac{13}{2}\)và số thứ hai phải lớn hơn \(\frac{13}{2}\)
\(\Rightarrow\frac{13}{2}=6,5\)
\(\Rightarrow\)Hai số đó là 6 và 7
\(\Rightarrow\)Hai phân số đó là \(\frac{1}{6}va\frac{1}{7}\)
#~Will~be~Pens~#
Bài giải: Số tấn gạo có trong kho là :
2,45 : 1/4 = 9,8 (tấn)
Đổi : 9,8 tấn = 9800 kg
35% lượng gạo trong kho là :
9800 x 35% = 3430 (kg)
Đ/s : ...
Lượng gạo có trong kho là :
2,45 : 1/4 = 9,8 ( tấn )
35% lượng gạo trong kho là :
9,8 : 100 x 35 = 3,43 ( tấn )
Đổi : 3,43 tấn = 3430 kg
Đ/S : 3430 kg gạo
Tk mk nha
Chúc bn hok tốt
Tham khảo đề này nhé !!!!
Có tự luận thôi nhé
Bài 1 (3,0 điểm) Thực hiện các phép tính sau
Bài 2 (2,0 điểm) Tìm x, biết
Bài 3 (1,5 điểm)
Một khu vườn có diện tích 1000m2 được chia thành các mảnh nhỏ để trồng 4 loại cây ăn quả: bưởi, táo, cam, ổi. Diện tích trồng bưởi chiếm 25% tổng diện tích, diện tích trồng táo bằng 2/5 diện tích còn lại, diện tích trồng cam và ổi bằng nhau. Tính diện tích trồng mỗi loại cây.
Bài 4 (2,5 điểm)
Trên cùng một nửa mặt phẳng bờ là đường thẳng chứa tia Oz, vẽ hai tia OA và OB sao cho góc zOA = 600, góc xOB = 1200
a) Tính số đo góc AOB
b) Tia OA có là tia phân giác của góc xOB không? Vì sao
c) Vẽ tia Oy là tia đối của Oz và Ot là tia phân giác của góc Yob. Hỏi hai góc Bot và BOA có phụ nhau không? Vì sao?
Bài 5 (1,0 điểm) Tìm các số nguyên dương n sao cho n2/(60 – n) là một số nguyên tố.
A B C E D a)Theo gt tam giac ABC can tai A nen AB=AC(Tinh chat tam giac can)
b)Vi AD la phan giac goc A ma tam giac ABC can nen AD la trung tuyen tam giac ABC ma BE la trung tuyen tam giac ABC va AD giao BE tai H =>CH latrung tuyen tam giac ABC =>CH di qua trung diem AB
c)ta co KB=KC vi tam giac ABK=ACK(gocBAK=CAK;AB=AC;ak chung)
nen k thuoc trung truc bc(1)
vi AB=AC (theo a) nen a thuoc trung truc bc
ma AD la trung tuyen BC nen DB=DíC nen D thuoc trung truc BC
Ma Ah trung AD
H la trung truc bc
A,H,k thang hang
Kham khảo đề tự luận này nè bọn mình thi chúng đấy
Câu 1 (2,0 điểm) Thực hiện phép tính:
a) 2xy.3x2y3
b) x.(x2 - 2x + 5)
c) (3x2 - 6x) : 3x
d) (x2 – 2x + 1) : (x – 1)
Câu 2 (2,0 điểm). Phân tích các đa thức sau thành nhân tử:
a) 5x2y - 10xy2
b) 3(x + 3) – x2 + 9
c) x2 – y2 + xz - yz
Câu 3 (2,0 điểm). Cho biểu thức:
a) Với điều kiện nào của x thì giá trị của biểu thức A được xác định?
b) Rút gọn biểu thức A.
c) Tìm giá trị của biểu thức A tại x = 1.
Câu 4 (3,5 điểm). Cho tam giác MNP vuông tại M, đường cao MH. Gọi D, E lần lượt là chân các đường vuông góc hạ từ H xuống MN và MP.
a) Chứng minh tứ giác MDHE là hình chữ nhật.
b) Gọi A là trung điểm của HP. Chứng minh tam giác DEA vuông.
c) Tam giác MNP cần có thêm điều kiện gì để DE = 2EA.
Câu 5 (0,5 điểm). Cho a + b = 1. Tính giá trị của các biểu thức sau:
M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b).
Tham khảo nek :
Bài 1: (3 điểm) Giải phương trình và bất phương trình:
C) x – 2)2 + 2(x – 1) ≤ x2 + 4
Bài 2: (2 điểm) Một ô tô đi từ A đến B với vận tốc 60km/h và đi từ B về A với vận tốc 45km/h. Thời gian cả đi và về hết 7 giờ. Tính quãng đường AB.
Bài 3: (1 điểm)Chứng minh rằng nếu a + b = 1 thì a2 + b2 ≥ 1/2
Bài 4: (4 điểm) Cho hình thang ABCD (AB // CD) có AB = AD = CD/2. Gọi M là trung điểm của CD và H là giao điểm của AM và BD.
a) Chứng minh tứ giác ABMD là hình thoi
b) Chứng minh BD ⊥ BC
c) Chứng minh ΔAHD và ΔCBD đồng dạng
d) Biết AB = 2,5cm; BD = 4cm. Tính độ dài cạnh BC và diện tích hình thang ABCD.
Đáp án và Hướng dẫn giải
Bài 1
a) Điều kiện: x + 2 ≠ 0 và x – 2 ≠ 0 ⇔ x ≠ ± 2
(Khi đó: x2 – 4 = (x + 2)(x – 2) ≠ 0)
Vậy tập nghiệm của pt là: S = {-1; 1}
b) Điều kiện: 2x ≥ 0 ⇔ x ≥ 0
Khi đó: |x – 5| = 2x ⇔ x – 5 = 2x hoặc x – 5 = -2x
⇔ x = -5 hoặc x = 5/3
Vì x ≥ 0 nên ta lấy x = 5/3 . Tập nghiệm : S = {5/3}
c) x – 2)2 + 2(x – 1) ≤ x2 + 4
⇔ x2 – 4x + 4 + 2x – 2 ≤ x2 + 4
⇔ -2x ≤ 2
⇔ x ≥ -1
Tập nghiệm S = {x | x ≥ -1}
Bài 2
Gọi x (km) là quãng đường AB (x > 0)
Thời gian đi từ A đến B là: x/60 (giờ)
Thời gian đi từ B về A là: x/45 (giờ)
Theo đề ra, ta có phương trình:
⇔ 3x + 4x = 7.180 ⇔ 7x = 7.180 ⇔ x = 180 (nhận)
Trả lời: Quãng đường AB dài 180km.
Bài 3
Ta có: a + b = 1 ⇔ b = 1 – a
Thay vào bất đẳng thức a2 + b2 ≥ 1/2 , ta được:
a2 + (1 – a)2 ≥ 1/2 ⇔ a2 + 1 – 2a + a2 ≥ 1/2
⇔ 2a2 – 2a + 1 ≥ 1/2 ⇔ 4a2 – 4a + 2 ≥ 1
⇔ 4a2 – 4a + 1 ≥ 0 ⇔ (2a – 1)2 ≥ 0 (luôn đúng)
Vậy bất đẳng thức được chứng minh
Bài 4
a) Ta có: AB = AD = CD/2 và M là trung điểm của CD (gt)
⇔ AB = DM và AB // DM
Do đó tứ giác ABMD là hình bình hành có AB = AD. Vậy ABMD là hình thoi.
b) M là trung điểm của CD nên BM là trung tuyến của ΔBDC mà MB = MD = MC. Do đó ΔBDC là tam giác vuông tại B hay DB ⊥ BC
c) ABMD là hình thoi (cmt) ⇔ ∠D1 = ∠D2
Do đó hai tam giác vuông AHD và CBD đồng dạng (g.g)
d) Ta có :
Xét tam giác vuông AHB, ta có :
Dễ thấy tứ giác ABCM là hình bình hành (AB // CM và AB = CM)
⇒ BC = AM = 3 (cm)
Ta có:
M là trung điểm của DC nên
SBMD = SBMC = SBCD/2 = 3 (cm2) (chung đường cao kẻ từ B và MD = MC)
Mặt khác ΔABD = ΔMDB (ABCD là hình thoi)
⇔ SABD = SBMD = 3 (cm2)
Vậy SABCD = SABD + SBMD + SBMC = 9 (cm2)
Một hình tam giác có độ dài đáy là 45 cm. Độ dài đáy bằng chiều cao. Tính diện tích của tam giác đó?
Diện tích của hình tam giác đó là :
(45x45):2=1012,5(cm2)
Đáp số : 1012,5cm2
Diện tích hình tam giác là
45x45=2025(cm2)
Đ/S:2025cm2
hok tốt!!!!!!!!!!!!!!!!!
A B C D H E F
Gộp a) + b) lại cho dễ làm:
Xét hai tam giác ABE và tam giác ACF:
Ta thấy rằng: \(\widehat{BEA}=\widehat{CFA}\)
Mà: \(\widehat{BEA}+\widehat{BAC}+\widehat{ABE}=180^o\Rightarrow\widehat{ABE}=180^o-\widehat{BEA}-\widehat{BAC}\) (tổng ba góc trong tam giác)
\(\widehat{CFA}+\widehat{BAC}+\widehat{ACF}=180^o\Rightarrow\widehat{ACF}=180^o-\widehat{CFA}-\widehat{BAC}=180^o-\widehat{BEA}-\widehat{BAC}=\widehat{ABE}\)
Từ đây,ta có: \(\widehat{ACF}=\widehat{ABE}\).Từ đây kết hợp giả thiết góc ABC > góc ACB suy ra: \(\widehat{ABC}-\widehat{ABE}>\widehat{ACB}-\widehat{ACF}\)
Hay góc EBC > góc FCB . Đầu tiên,ta dễ c/m B,H,E thẳng hàng ,do BE là đường cao xuất phát từ đỉnh B.Lại thấy rằng H là giao điểm của 2 đường cao nên đường cao còn lại cũng đi qua nó.Do vậy H là trực tâm)Ta sẽ c/m C,H, F thẳng hàng để suy ra EBC = HBC > FCB = HCB tức là góc HBC > góc HCB.Để từ đó theo quan hệ giữa góc và cạnh đối diện trong tam giác BHC ta suy ra HC > HB
(mai mình hướng dẫn tiếp,buồn ngủ quá!)
Chứng minh tiếp từ chỗ c/m C, H, F thẳng hàng nhé: (không chắc lắm đâu,mình dốt hình)
Ta có: H là giao điểm của hai đường cao nên đường cao còn lại cũng đi qua H hay H là trực tâm.
Lại có: CH là đoạn thẳng xuất phát từ C đến trực tâm H nên thuộc đường cao xuất phát từ C. (1)
HF là đoạn thẳng hạ từ trực tâm H vuông góc với AB nên thuộc đường cao xuất phát từ C (2)
Từ (1) và (2) suy ra C, H, F thẳng hàng (3)
Từ đây suy ra \(\widehat{EBC}=\widehat{HBC}>\widehat{FCB}=\widehat{HCB}\)
Hay \(\widehat{HBC}>\widehat{HCB}\) vậy theo quan hệ giữa góc và cạnh đối diện trong tam giác BHC ta suy ra HC > HB
b) Theo kết quả của (3) (ở câu a) ta có C, H, F thẳng hàng.
c)Theo giả thiết ở câu a) ta có: \(\widehat{ABC}>\widehat{ACB}\).Theo quan hệ giữa góc và cạnh đối diện của tam giác ABC suy ra AC > AB
Suy ra AC + AB > AB + AB = 2AB (4).
Lại có: Tam giác ABD vuông tại D (giả thiết AD là đường cao hạ từ A vuông góc với BC). Do đó AB là cạnh lớn nhất.
Suy ra AB > AD suy ra 2AB > 2AD (5)
Từ (4) và (5) kết hợp lại,ta có: AC + AB > 2AB > 2AD tức là AC + AB > 2AD.
d) Đang suy nghĩ...
\(a,\)\(\frac{2}{n}\)và \(\frac{2}{n+1}\)
Có : \(\frac{2}{n}=\frac{2\left(n+1\right)}{n\left(n+1\right)}\)
\(\frac{2}{n+1}=\frac{2n}{n\left(n+1\right)}\)
Vậy ta có : \(\frac{2\left(n+1\right)}{n\left(n+1\right)}\)và \(\frac{2n}{n\left(n+1\right)}\)
\(b,\)\(\frac{1}{n\left(n+1\right)}\)và \(\frac{-2}{n+1}\)
Có : \(\frac{1}{n\left(n+1\right)}\)
\(\frac{-2}{n+1}=\frac{-2n}{n\left(n+1\right)}\)
Vậy ta có : \(\frac{1}{n\left(n+1\right)}\)và \(\frac{-2n}{n\left(n+1\right)}\)