Cho tam giác ABC vuông tại A, đường cao AH. Trên cạnh BC lấy các điểm E, F sao cho CA=CE, BF=BA. Gọi I, J, K lần lượt là tâm các đường tròn nội tiếp các tam giác ABC, ABH, ACH. Chứng minh rằng
a) A, F, K thẳng hàng
b) EKA =90
c) Năm điểm E, I, J, K, F cùng thuộc một đường tròn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có góc ADI= góc IAM(cùng phụ góc IAO)
mà IAM = IHM ( 2 góc cùng chắn cung IM)
suy ra ADI = IHM
suy ra DOHI nội tiếp (ngoài = đối trong)
suy ra ĐPCM
\(\hept{\begin{cases}mx-y=1\left(1\right)\\x+my=m+6\left(2\right)\end{cases}}\)
a) với \(m=1\) hpt có dạng
\(\hept{\begin{cases}x-y=1\\x+y=7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y+1\\y+1+y=7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y+1\\2y=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=3\\x=4\end{cases}}\)
vậy với \(m=1\) hpt có nghiệm duy nhất \(\left(x;y\right)=\left(4;3\right)\)
b) từ \(\left(1\right)\) ta có \(y=mx-1\) \(\left(3\right)\)
thay (3) vào (2) ta được
\(x+m\left(mx-1\right)=m+6\)
\(\Leftrightarrow x+m^2x-m=m+6\)
\(\Leftrightarrow x\left(m^2+1\right)=2m+6\) \(\left(4\right)\)
để hpt có nghiệm duy nhất thì pt \(\left(4\right)\) pải có nghiệm duy nhất
ta thấy \(m^2+1>0\forall m\)
\(\Rightarrow\) pt (4 ) luôn có 1 nghiệm duy nhất với mọi m
từ (4) ta có: \(x=\frac{2m+6}{m^2+1}\)
khi đó từ (3) ta có: \(y=\frac{m\left(2m+6\right)}{m^2+1}-1\)
\(\Leftrightarrow y=\frac{m^2+6m-1}{m^2+1}\)
với mọi m thì hpt đã cho có nghiệm duy nhất là \(\hept{\begin{cases}x=\frac{2m+6}{m^2+1}\\y=\frac{m^2+6m-1}{m^2+1}\end{cases}}\)
theo bài ra \(3x-y=1\)
\(\Leftrightarrow\frac{3\left(2m+6\right)}{m^2+1}-\frac{m^2+6m-1}{m^2+1}=1\)
\(\Leftrightarrow\frac{6m+18-m^2-6m+1}{m^2+1}=1\)
\(\Leftrightarrow19-m^2=m^2+1\)
\(\Leftrightarrow-2m^2=-18\)
\(\Leftrightarrow m^2=9\)
\(\Leftrightarrow m=\pm3\) ( TMĐK )
vậy ...
\(Đ\text{K}:x\ge20;y\ge0\)
\(\text{PT}\left(1\right)\Leftrightarrow x+2\sqrt{xy}+y=49\)
\(x+y=49-2\sqrt{xy}\)
\(\text{PT}\left(2\right)\Leftrightarrow x+y+2\sqrt{\left(x-20\right)\left(y+3\right)}=53\)
\(\Leftrightarrow49-2\sqrt{xy}+2\sqrt{\left(x-20\right)\left(y+3\right)}=53\)
\(\Leftrightarrow\sqrt{\left(x-20\right)\left(y+3\right)}-\sqrt{xy}=2\)
\(\Leftrightarrow\sqrt{\left(x-20\right)\left(y+3\right)}=2+\sqrt{xy}\)
\(\Leftrightarrow xy+3x-20y-60=4+4\sqrt{xy}+xy\)
\(\Leftrightarrow3x-20y-64=4.\frac{49-x-y}{2}\)
\(\Leftrightarrow5x-18y=162\)
\(\text{R}út:x=\frac{162+18y}{5}\text{thay vào PT(1)}\)
Nghiệm: y = 1 (có thể liên hợp hoặc bình phương).
đề bài cho x+y=2
vậy : \(\left(x+y\right)^2=4\) định lí Mori
\(P=x^2.y^2.\left\{\left(x+y\right)^2-2xy\right\}\)
mặt khác ta có
\(xy\le\frac{\left(x+y\right)^2}{4}\Rightarrow2xy\le\frac{\left(x+y\right)^2}{2}\)
suy ra
\(P\le x^2y^2\left\{\left(x+y\right)^2-\frac{\left(x+y\right)^2}{2}\right\}\)
có x+y=2
\(\Rightarrow P\le x^2y^2\left(4-2\right)=2x^2y^2\)
ta lại có
\(2x^2y^2\le\frac{\left(x^2+y^2\right)^2}{2}=\frac{\left\{\left(x+y\right)^2-2xy\right\}^2}{2}\)
\(p\le\frac{\left(4-2xy\right)^2}{2}\)
có 2xy=2 ( cmr)
\(P\le\frac{\left(4-2\right)^2}{2}=2\)
vậy giá trị lớn nhất của P là 2 dấu = xảy ra khi x=y=1
AK giao BC tại F'
->ABF' = ABH + HAF' = ACB + CAF' = 180 - AF'C = AF'B nên AB = BF'. Mà AB = BF =>F trùng F'
Vậy A, K, F thẳng hàng
CK là phân giác, AC = CE nên KAC = KEC
AB = BF nên BAF = BFA
Có : EKF = 180 - KEF - KFE = 180 - KAC - KEC = 180 - BAC = 90
Do A, K, F thẳng hàng nên EKA = 90
Đó là câu a và b
Giúp m` câu c nhé