Phân tích các đa thức sau thành nhân tử :
a. x3 + x2y - x2z - xyz
b. x2 - y2 + 6x + 9
c. x2 - 4xy - x + 2y + 4y2
d. 18x3 - 12x2 + 3x - 2
e. a2 + 2ab + b2 - c2 + 2cd - d2
f. xz - yz - x2 + 2xy - y2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x3 + x2y - x2z - xyz
= ( x3 + x2y ) - ( x2z + xyz )
= x2( x + y ) + xz( x + y )
= ( x + y )( x2 + xz )
= x( x + y )( x + z )
b) x2 - y2 + 6x + 9
= ( x2 + 6x + 9 ) - y2
= ( x + 3 )2 - y2
= ( x - y + 3 )( x + y + 3 )
c) x2 - 4xy - x + 2y + 4y2
= ( x2 - 4xy + 4y2 ) - ( x - 2y )
= ( x - 2y )2 - ( x - 2y )
= ( x - 2y )( x - 2y - 1 )
d) 18x3 - 12x2 + 3x - 2
= ( 18x3 - 12x2 ) + ( 3x - 2 )
= 6x2( 3x - 2 ) + ( 3x - 2 )
= ( 3x - 2 )( 6x2 + 1 )
e) a2 + 2ab + b2 - c2 + 2cd - d2
= ( a2 + 2ab + b2 ) - ( c2 - 2cd + d2 )
= ( a + b )2 - ( c - d )2
= ( a + b - c + d )( a + b + c - d )
f) xz - yz - x2 + 2xy - y2
= z( x - y ) - ( x2 - 2xy + y2 )
= z( x - y ) - ( x - y )2
= ( x - y )( z - x + y )
a) Vận dụng hằng đẳng thức và nhân đơn thức với đơn thức nha bạn
( 4x+3)2 - 2x(x+6) - 5(x-2)(x+2)
= [ (4x)2+2*4x*3+32] - ( 2x2 + 12x) - 5(x2-22)
= (16x2+24x+9) - ( 2x2+12x) - 5( x2-4)
= 16x2+24x+9-2x2-12x-5x2+20
= 9x2+12x+29 (1)
b) Thay vào là ra nha
Thay x= -2 vào (1), ta được:
M= 9* (-2)2+12*(-2)+29
= 9*4+12*(-2)+29
= 36+(-24)+29
= 31
Vậy M= 31 tại x= -2
c) Từ kết quả ở phần a, ta được:
M= 9x2+12x+29
Ta có :
9x2 \(\ge\)0 với mọi x
12x \(\ge\)0 với mọi x
29>0\(\Rightarrow\)Biểu thức M luôn dương. ( điều phải chứng minh ).
CHÚC BẠN HỌC TỐT NHA!!
Đề đúng là thế này à:
tìm số tự nhiên a sao cho \(a=\frac{121}{27}.\frac{54}{11}\)
\(\Rightarrow a=\frac{121.54}{27.11}=\frac{11.2}{1.1}=22\)
Vậy a =22
Chúc bạn học tốt
Bg
a) Ta có A = \(\frac{2x-1}{x-1}\)(x \(\inℤ\))
Để A nguyên thì 2x - 1 \(⋮\)x - 1
=> 2(x - 1) + 1 \(⋮\)x - 1
Mà 2(x - 1) \(⋮\)x - 1
Nên 1 \(⋮\)x - 1
=> x - 1 \(\in\)Ư(1)
=> x - 1 = 1 hay -1
=> x = {2; 0}
Vậy x = {2; 0}
b) Ta có:B =\(\frac{3x+4}{x+1}\)(x \(\inℤ\))
.....
=> 3x + 4 \(⋮\)x + 1
=> 3(x + 1) + 1 \(⋮\)x + 1
......
Nên 1 \(⋮\)x + 1
......
c) Ta có: C = \(\frac{4-3x}{2x+5}\)(x \(\inℤ\))
......
=> 4 - 3x \(⋮\)2x + 5
=> 2.(4 - 3x) + 3.(2x + 5) \(⋮\)2x + 5
=> 8 - 6x + 6x + 15 \(⋮\)2x + 5
=> 23 \(⋮\)2x + 5
=> 2x + 5 \(\in\)Ư(23)
....... (Tụ làm, có gì ko hiểu cứ hỏi)
ERROR : Đề bài sai
Plz check your đề bài or tôi ko giúp cho bạn đâu
c, \(6\cdot x+3\cdot x-4=105\)
\(6\cdot x+3\cdot x=105+4\)
\(6\cdot x+3\cdot x=109\)
\(\left(6+3\right)\cdot x=109\)
\(9\cdot x=109\)
\(x=109:9\)
\(x=\frac{109}{9}\)
d, \(200-\left(8\cdot x+7\right)=121\)
\(8\cdot x+7=200-121\)
\(8\cdot x+7=79\)
\(8\cdot x=79-7\)
\(8\cdot x=72\)
\(x=72:8\)
\(x=9\)
\(c,6.x+3.x-4=105\)
\(\left(6+3\right).x=105+4\)
\(9x=109\)
\(x=\frac{109}{9}\)
\(d,200-\left(8.x+7\right)=121\)
\(8.x+7=200-121\)
\(8.x+7=79\)
\(8.x=72\)
\(x=9\)
a) x3 + x2y - x2z - xyz
= ( x3 + x2y ) - ( x2z + xyz )
= x2( x + y ) + xz( x + y )
= ( x + y )( x2 + xz )
= x( x + y )( x + z )
b) x2 - y2 + 6x + 9
= ( x2 + 6x + 9 ) - y2
= ( x + 3 )2 - y2
= ( x - y + 3 )( x + y + 3 )
c) x2 - 4xy - x + 2y + 4y2
= ( x2 - 4xy + 4y2 ) - ( x - 2y )
= ( x - 2y )2 - ( x - 2y )
= ( x - 2y )( x - 2y - 1 )
d) 18x3 - 12x2 + 3x - 2
= ( 18x3 - 12x2 ) + ( 3x - 2 )
= 6x2( 3x - 2 ) + ( 3x - 2 )
= ( 3x - 2 )( 6x2 + 1 )
e) a2 + 2ab + b2 - c2 + 2cd - d2
= ( a2 + 2ab + b2 ) - ( c2 - 2cd + d2 )
= ( a + b )2 - ( c - d )2
= ( a + b - c + d )( a + b + c - d )
f) xz - yz - x2 + 2xy - y2
= z( x - y ) - ( x2 - 2xy + y2 )
= z( x - y ) - ( x - y )2
= ( x - y )( z - x + y )