P=((3/x-1)+(1/ √x+1)): (1/ (√x)-1)
Giups mình vowisi, mn ai lm thì vt ra nháp cho dễ đọc, đây mình sợ hiểu lầm nên vt vậy ó.
Hứa trả 3 tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
They go to the school cafeteria for snacks and drinks at break.
they go to the at school cafeteria for break snacks and drink
cậu có ghi thiếu ko
They go to the school cafeteria for snacks and drinks at break
:D
Bài làm:
a) Δ EHB ~ Δ DHC (g.g) vì:
+ \(\widehat{EHB}=\widehat{DHC}\) (đối đỉnh)
+ \(\widehat{BEH}=\widehat{CDH}=90^0\)
=> đpcm
b) Theo phần a, 2 tam giác đồng dạng
=> \(\frac{HE}{HB}=\frac{HD}{HC}\)
Δ HED ~ Δ HBC (c.g.c) vì:
+ \(\frac{HE}{HB}=\frac{HD}{HC}\) (chứng minh trên)
+ \(\widehat{EHD}=\widehat{BHC}\) (đối đỉnh)
=> đpcm
c) Δ ABD ~ Δ ACE (g.g) vì:
+ \(\widehat{ADB}=\widehat{AEC}=90^0\)
+ \(\widehat{A}\) chung
=> \(\frac{AD}{AE}=\frac{AB}{AC}\)
Δ ADE ~ Δ ABC (c.g.c) vì:
+ \(\frac{AD}{AE}=\frac{AB}{AC}\) (chứng minh trên)
+ \(\widehat{A}\) chung
=> đpcm
d) Gọi F là giao của AH với BC
Δ BHF ~ Δ BCD (g.g) vì:
+ \(\widehat{BFH}=\widehat{BDC}=90^0\)
+ \(\widehat{B}\) chung
=> \(\frac{BF}{BH}=\frac{BD}{BC}\Rightarrow BD.BH=BF.BC\left(1\right)\)
Tương tự ta chứng minh được:
\(CH.CE=FC.BC\left(2\right)\)
Cộng vế (1) và (2) lại ta được:
\(BD.BH+CH.CE=\left(BF+FC\right)BC=BC.BC=BC^2\)
=> đpcm
x + 2x + 3x = 180
x(1 + 2 + 3) = 180
x . 6 = 180
x = 180 : 6
x = 30.
[3x - 8] + 6 = 25
3x - 8 = 25 - 6
3x - 8 = 19
3x = 27
x = 27 : 3
x = 9.
\(D=\sqrt{2+1-2\sqrt{2}}-\sqrt{2+1+2\sqrt{2}}\)
\(D=\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{\left(\sqrt{2}+1\right)^2}\)
\(D=\sqrt{2}-1-\left(\sqrt{2}+1\right)\)
\(D=\sqrt{2}-1-\sqrt{2}-1\)
\(D=-2\)
CÂU THỨ 2 NHA !!!!!!
XÉT: \(2VT=2a\sqrt{b-1}+2b\sqrt{a-1}\)
=> \(2VT=a.2.\sqrt{1}.\sqrt{b-1}+b.2.\sqrt{1}.\sqrt{a-1}\)
TA ÁP DỤNG BĐT CAUCHY 2 SỐ SẼ ĐƯỢC:
=> \(2VT\le a\left(1+b-1\right)+b\left(1+a-1\right)\)
=> \(2VT\le ab+ab\)
=> \(2VT\le2ab\)
=> \(VT\le ab\)
=> TA CÓ ĐIỀU PHẢI CHỨNG MINH.
\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(P=\left(\frac{3}{x-1}+\frac{1}{\sqrt{x}+1}\right):\frac{1}{\sqrt{x}-1}\)
\(P=\frac{3+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\left(\sqrt{x}-1\right)\)
\(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}\)